Mathematical Modeling of Lactobacillus paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Feedstock
2.2. Experimental Apparatus
2.3. Fermentation Protocol
2.4. Analytical Methods
2.5. Fermentation Parameters
2.6. Kinetic Models
2.7. Statistical Analysis
3. Results and Discussions
3.1. Enzymatic Treatment and Fermentation Results
3.2. Fermentation Parameters
3.3. Kinetic Constants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menrad, K. Market and marketing of functional food in Europe. J. Food Eng. 2003, 56, 181–188. [Google Scholar] [CrossRef]
- Gomes, A.M.P.; Malcata, X.F. Bifidobacterium ssp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 1999, 10, 139–157. [Google Scholar] [CrossRef]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C. Trends in non-dairy probiotic beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Nocerino, R.; Paparo, L.; Terrin, G.; Pezzella, V.; Amoroso, A.; Cosenza, L.; Cecere, G.; De Marco, G.; Micillo, M.; Albano, F.; et al. Cow’s milk and rice fermented with Lactobacillus Paracasei CBA L74 prevent infectious diseases in children: A randomized controlled trial. Clin. Nutr. 2017, 36, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Nigro, F.; Passannanti, F.; Salameh, D.; Schiattarella, P.; Budelli, A.; Nigro, R. Lactic fermentation of Cereal Flour: Feasibility tests on rice, oat and wheat. Appl. Food Biotechnol. 2019, 6, 165–172. [Google Scholar] [CrossRef]
- Gallo, M.; Passannanti, F.; Colucci Cante, R.; Nigro, F.; Salameh, D.; Schiattarella, P.; Schioppa, C.; Budelli, A.; Nigro, R. Effects of the glucose addition during lactic fermentation of rice, oat and wheat flours. Appl. Food Biotechnol. 2020, 7, 21–30. [Google Scholar]
- Gallo, M.; Passannanti, F.; Colucci Cante, R.; Nigro, F.; Schiattarella, P.; Zappulla, S.; Budelli, A.; Nigro, R. Lactic fermentation of cereals aqueous mixture of oat and rice flours with and without glucose addition. Heliyon 2020, 6, e04920. [Google Scholar] [CrossRef] [PubMed]
- Colucci Cante, R.; Gallo, M.; Nigro, F.; Passannanti, F.; Salameh, D.; Budelli, A.; Nigro, R. Lactic fermentation of cooked navy beans by Lactobacillus paracasei CBA L74 aimed at a potential production of functional legume-based foods. Can. J. Chem. Eng. 2020, 98, 1955–1961. [Google Scholar] [CrossRef]
- Salameh, D.; Nigro, F.; Colucci Cante, R.; Passannanti, F.; Gallo, M.; Budelli, A.; Marzocchella, A.; Nigro, R. Fermentation of rice flour supernatant using Lactobacillus Paracasei CBA L74. Chem. Eng. Trans. 2019, 75, 289–294. [Google Scholar] [CrossRef]
- Sarno, M.; Lania, G.; Cuomo, M.; Nigro, F.; Passannanti, F.; Budelli, A.; Fasano, F.; Troncone, R.; Auricchio, S.; Barone, M.V.; et al. Lactobacillus paracasei CBA L74 interferes with gliadin peptides entrance in Caco-2 cells. Int. J. Food Sci. Nutr. 2014, 65, 953–959. [Google Scholar] [CrossRef]
- Gallo, M.; Nigro, F.; Passannanti, F.; Nanayakkara, M.; Lania, G.; Parisi, F.; Salameh, D.; Budelli, A.; Barone, M.V.; Nigro, R. Effect of pH control during rice fermentation in preventing a gliadin P31-43 entrance in epithelial cells. Int. J. Food Sci. Nutr. 2019, 70, 950–958. [Google Scholar] [CrossRef]
- Linville, J.L.; Rodriguez Jr, M.; Mielenz, J.R.; Cox, C.D. Kinetic modelling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour. Technol. 2013, 147, 605–613. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N.; Scannell, A. Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food Bioprod. Process. 2011, 89, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.M.; Aguirre-Ezkauriatza, E.J.; Ramírez-Medrano, A.; Rodríguez-Sánchez, Á. Kinetic analysis and mathematical modelling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey. J. Dairy Sci. 2010, 93, 5552–5560. [Google Scholar] [CrossRef]
- Del Nobile, M.A.; Altieri, C.; Corbo, M.R.; Sinigaglia, M.; La Notte, E. Development of a structured model for batch cultures of lactic acid bacteria. J. Ind. Microbiol. Biotechnol. 2003, 30, 421–426. [Google Scholar] [CrossRef]
- Gadgil, C.J.; Venkatesh, K.V. Structured model for batch culture growth of Lactobacillus bulgaricus. J. Chem. Technol. Biotechnol. 1996, 68, 89–93. [Google Scholar] [CrossRef]
- Rezvani, F.; Ardestani, F.; Najafpour, G. Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture. Braz. J Microbiol. 2017, 48, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Schepersa, A.W.; Thibault, J.; Lacroix, C. Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part II: Kinetic modelling and model validation. Enzyme Microb. Technol. 2002, 30, 187–194. [Google Scholar] [CrossRef]
- Venkatesh, K.V.; Okos, M.R.; Wankat, P.C. Kinetic model of growth and lactic acid production from lactose by Lactobacillus bulgaricus. Process Biochem. 1993, 28, 231–241. [Google Scholar] [CrossRef]
- Nielsen, J.; Nikolajsen, K.; Villadsen, J. Structured modelling of a microbial system: I. A theoretical study of lactic acid fermentation. Biotechnol. Bioeng. 1991, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Muloiwaa, M.; Nyende-Byakikab, S.; Dinkab, M. Comparison of unstructured kinetic bacterial growth models. S. Afr. J. Chem. Eng. 2020, 33, 141–150. [Google Scholar] [CrossRef]
- Maier, M.R. Bacterial growth. In Environmental Microbiology, 2nd ed.; Maier, M.R., Pepper, I.L., Gerba, C.P., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 37–54. [Google Scholar] [CrossRef]
- Ardestani, F.; Rezvani, F.; Najafpour, G. Evaluation of cell growth and substrate consumption kinetic of five different Lactobacilli in a submerged batch whey culture for lactic acid production. Int. J. Eng. Sci. 2015, 28, 970–977. [Google Scholar]
- Ricker, W.E. Growth rates and models. In Fish Physiology, Bioenergetics and Growth, 3rd ed.; Hoar, W.S., Randall, D.J., Brett, J.R., Eds.; Academic Press: New York, NY, USA, 1979; Volume 8, pp. 677–743. [Google Scholar]
- Contois, D.E. Kinetics of bacterial growth: Relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 1959, 21, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Luedeking, R.; Piret, E.L. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1959, 1, 393–412. [Google Scholar] [CrossRef]
- Luedeking, R.; Piret, E.L. Transient and steady states in continuous fermentation: Theory and experiments. J. Biochem. Microbiol. Technol. Eng. 1959, 1, 431–459. [Google Scholar] [CrossRef]
- Gallo, M.; Passannanti, F.; Schioppa, C.; Montella, S.; Colucci Cante, R.; Nigro, F.; Budelli, A.; Nigro, R. Enzymatic pre-treatment and lactic fermentation of wheat flour suspension at high solid content. J. Food Process. Preserv. 2020, e15299. [Google Scholar] [CrossRef]
- Soro-Yao, A.A.; Aka, S.; Thonart, P.; Djè, K.D. Assessment of the potential of lactic acid bacteria as dried starter culture for cereal fermentation. Open Biotechnol. J. 2014, 8, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Panesar, P.S.; Saini, M.S. Optimization of process parameters and estimation of kinetic parameters for lactic acid production by Lactobacillus casei MTCC 1423. Biomass Conv. Bioref. 2019, 9, 253–266. [Google Scholar] [CrossRef]
RRF (mg/gflour) | URFS (mg/gflour) | HRFS (mg/gflour) | |∆hydrolysis| (%) | |
---|---|---|---|---|
Starch | 770 ± 4.20 a | 770 ± 4.20 a | 133.33 ± 18.98 b | 82.68 ± 0.07 |
Glucose | 0.45 ± 0.04 a | 67.11 ± 0.04 b | 95.40 ± 0.16 c | 3.67 ± 0.01 |
Process Conditions | td (h) | k (h−1) | n |
---|---|---|---|
Without pH control | 1.52 | 0.66 | 6.58 |
With pH control | 1.21 | 0.83 | 9.92 |
Monod | Contois | Logistic | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
µmax (h−1) | Ks (g/L) | RSS | R2 | µmax (h−1) | Ks (g/g) | RSS | R2 | µmax (h−1) | Xm (g/L) | RSS | R2 | |
No pH control | 0.811 | 10.124 | 0.1101 | 0.742 | 0.993 | 124.961 | 0.0041 | 0.990 | 0.619 | 0.437 | 0.0537 | 0.874 |
pH control | 0.734 | 4.880 | 0.0061 | 0.987 | 0.517 | 0.001 | 0.0071 | 0.985 | 0.472 | 28.665 | 0.0338 | 0.928 |
α (g/g) | β (g/g h) | |α/β| | RSS | R2 | |
---|---|---|---|---|---|
Without pH control | 0.001 | 0.489 | 0.002 | 0.0013 | 0.958 |
With pH control | 19.539 | −8.637 | 2.262 | 0.3305 | 0.762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colucci Cante, R.; Gallo, M.; Nigro, F.; Passannanti, F.; Budelli, A.; Nigro, R. Mathematical Modeling of Lactobacillus paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control. Appl. Sci. 2021, 11, 2921. https://doi.org/10.3390/app11072921
Colucci Cante R, Gallo M, Nigro F, Passannanti F, Budelli A, Nigro R. Mathematical Modeling of Lactobacillus paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control. Applied Sciences. 2021; 11(7):2921. https://doi.org/10.3390/app11072921
Chicago/Turabian StyleColucci Cante, Rosa, Marianna Gallo, Federica Nigro, Francesca Passannanti, Andrea Budelli, and Roberto Nigro. 2021. "Mathematical Modeling of Lactobacillus paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control" Applied Sciences 11, no. 7: 2921. https://doi.org/10.3390/app11072921
APA StyleColucci Cante, R., Gallo, M., Nigro, F., Passannanti, F., Budelli, A., & Nigro, R. (2021). Mathematical Modeling of Lactobacillus paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control. Applied Sciences, 11(7), 2921. https://doi.org/10.3390/app11072921