The Effect of Different Levels of Sodium Nitrate on the Physicochemical Parameters and Nutritional Value of Traditionally Produced Fermented Loins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Fermented Loins
2.2. Proximate Chemical Composition, Physicochemical Properties
2.3. Analysis of Lipid Oxidation, Total Heme Pigments and Heme Iron Content
2.4. Color Measurements
2.5. N-Nitrosamines Determination
2.6. Nitrate and Nitrite Residues
2.7. Statistical Analysis
3. Results
3.1. Proximate Chemical Composition and Physicochemical Properties of Raw Material
3.2. Chemical Composition and Physicochemical Properties of Fermented Loins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flores, M.; Toldrá, F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products—Invited review. Meat Sci. 2021, 171, 108272. [Google Scholar] [CrossRef]
- Hammes, P.W. Metabolism of nitrate in fermented meats: The characteristic feature of a specific group of fermented foods. Food Microbiol. 2012, 29, 151–156. [Google Scholar] [CrossRef]
- Honikel, K.O. Curing agents. In Encyclopedia of Meat Sciences; Jensen, W.K., Devine, C., Dikeman, M., Eds.; Elsevier Ltd.: Oxford, UK, 2004; pp. 195–201. [Google Scholar]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef]
- Weiss, J.; Gibis, M.; Schuh, V.; Salminen, H. Advances in ingredient and processing systems for meat and meat products. Meat Sci. 2010, 86, 196–213. [Google Scholar] [CrossRef] [PubMed]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon, France. 2018. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono114.pdf (accessed on 5 January 2021).
- De Mey, E.; De Klerck, K.; De Maere, H.; Dewulf, L.; Derdelinckx, G.; Peeters, M.-C.; Fraeye, I.; Heyden, Y.V.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef]
- Pegg, R. Handbook of Fermented Meat and Poultry, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2015; pp. 19–30. [Google Scholar]
- Sindelar, J.J.; Milkowski, A.L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 2012, 26, 259–266. [Google Scholar] [CrossRef]
- Ma, L.; Hu, L.; Feng, X.; Wang, S. Nitrate and nitrite in health and disease. Aging Dis. 2018, 9, 938–945. [Google Scholar] [CrossRef] [Green Version]
- D’Ischia, M.; Napolitano, A.; Manini, P.; Panzella, L. Secondary targets of nitrite-derived reactive nitrogen species: Nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem. Res. Toxicol. 2011, 24, 2071–2092. [Google Scholar] [CrossRef]
- Bryan, N.S. Dietary nitrite: From menace to marvel. Funct. Foods Health Dis. 2016, 6, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Raubenheimer, K.; Bondonno, C.; Blekkenhorst, L.; Wagner, K.-H.; Peake, J.-M.; Neubauer, O. Effect of dietary nitrate on inflammation and immune function and implications for cardiovascular health. Nutr. Rev. 2019, 77, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, J.; Hansen, A. Geographies of meatification: An emerging Asian meat complex. Globalizations 2020, 17, 93–109. [Google Scholar] [CrossRef]
- Commission Regulation (EU). No. 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, 295, 1–177. [Google Scholar]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Santos, E.M.; Lorenzo, J.M. Cruciferous vegetables as sources of nitrate in meat products. Curr. Opinion Food Sci. 2021, 38, 1–7. [Google Scholar] [CrossRef]
- Rivera, N.; Bunning, M.; Martin, J. Uncured-labeled meat products produced using plant-derived nitrates and nitrites: Chemistry, safety, and regulatory considerations. J. Agric. Food Chem. 2019, 67, 8074–8084. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Stasiak, D.; Kęska, P. The influence of different levels of sodium nitrite on the safety, oxidative stability, and color of minced roasted beef. Sustainability 2019, 11, 3795. [Google Scholar] [CrossRef] [Green Version]
- Karwowska, M.; Kononiuk, A.; Wójciak, K. Impact of sodium nitrite reduction on lipid oxidation and antioxidant properties of cooked meat products. Antioxidants 2020, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- UNI. Foodstuffs—Determination of Nitrate and/or Nitrite Content—Part 4: Ion-Exchange Chromatographic (IC) Method for the Determination of Nitrate and Nitrite Content of Meat Products; UNI EN 12014-4; UNI: Milano, Italy, 2005. [Google Scholar]
- Kononiuk, A.D.; Karwowska, M. Comparison of selected parameters related to food safety of fallow deer and beef uncured fermented sausages with freeze-dried acid whey addition. Meat Sci. 2020, 161, 108015. [Google Scholar] [CrossRef] [PubMed]
- Kononiuk, A.D.; Karwowska, M. Influence of freeze-dried acid whey addition on biogenic amines formation in a beef and deer dry fermented sausages without added nitrite. Asian-Austral. J. Anim. Sci. 2020, 33, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Hornsey, H.C. The colour of cooked cured pork. I.—Estimation of the Nitric oxide-Haem Pigments. J. Sci. Food Agric. 1959, 7, 534–540. [Google Scholar] [CrossRef]
- Karwowska, M.; Dolatowski, Z.J. Comparison of lipid and protein oxidation, total iron content and fatty acid profile of conventional and organic pork. Int. J. Food Sci. Technol. 2013, 48, 2200–2206. [Google Scholar] [CrossRef]
- Lee, B.J.; Hendricks, D.G.; Cornforth, D.P. A comparison of carnosine and ascorbic acid on color and lipid stability in a ground beef patties model system. Meat Sci. 1999, 51, 245–253. [Google Scholar]
- Commision Internationale de l’Eclairage: Recommendations on Uniform Colour Spaces, Colour Difference Equations, Psychometric Color Terms; Supplement No. 2; Bureal Central de la CIE: Paris, France, 1978.
- AMSA. Meat Color Measurements Guidelines; American Meat Science Association: Savoy, IL, USA, 2012. [Google Scholar]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Impens, S.; Kowalska, T.; Paelinck, H.; Heyden, Y.V. Evaluation of the influence of proline, hydroxyproline or pyrrolidine in the presence of sodium nitrite on N-nitrosamine formation when heating cured meat. Anal. Chim. Acta 2010, 657, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Kononiuk, A.; Karwowska, M. Bioactive Compounds in Fermented Sausages Prepared from Beef and Fallow Deer Meat with Acid Whey Addition. Molecules 2020, 25, 2429. [Google Scholar] [CrossRef] [PubMed]
- Kęska, P.; Stadnik, J. Combined effect of sonication and acid whey on antioxidant and angiotensin-converting enzyme inhibitory activities of peptides obtained from dry-cured pork loin. Appl. Sci. 2020, 10, 4521. [Google Scholar] [CrossRef]
- Fontana, A.J. Appendix D: Minimum water activity limits for growth of microorganisms. In Water Activity in Foods: Fundamentals and Applications; Blackwell Publishing: Oxford, UK, 2007; p. 405. [Google Scholar]
- Marra, A.I.; Salgado, A.; Prieto, B.; Carballo, J. Biochemical characteristics of dry-cured lacón. Food Chem. 1999, 67, 33–37. [Google Scholar] [CrossRef]
- Stadnik, J.; Stasiak, D.M.; Dolatowski, Z.J. Proteolysis in dry-cured loins manufactured with sonicated pork and inoculated with Lactobacillus casei ŁOCK 0900 probiotic strain. Int. J. Food Sci. Technol. 2014, 49, 2578–2584. [Google Scholar] [CrossRef]
- Berardo, A.; Devreese, B.; De Maere, H.; Stavropoulou, D.A.; Van Royen, G.; Leroy, F.; De Smet, S. Actin proteolysis during ripening of dry fermented sausages at different pH values. Food Chem. 2017, 221, 1322–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferysiuk, K.; Wójciak, K. The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork. Foods 2020, 9, 1869. [Google Scholar] [CrossRef]
- Eskandari, M.H.; Hosseinpour, S.; Mesbahi, G.; Shekarforoush, S. New composite nitrite-free and low-nitrite meat-curing systems using natural colorants. Food Sci. Nutr. 2013, 1, 392–401. [Google Scholar] [CrossRef]
- Saputro, E.; Bintoro, V.P.; Pramono, Y.B. Color, pigment and residual nitrite of dendeng sapi naturally cured at various level of celery leaves and incubation temperatures. JITAA 2016, 41, 99–105. [Google Scholar]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Parolari, G.; Aguzzoni, A.; Toscani, T. Effects of Processing Temperature on Color Properties of Dry-Cured Hams Made without Nitrite. Foods 2016, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakamatsu, J.; Okui, J.; Ikeda, Y.; Nishimura, T.; Hattori, A. Establishment of a model experiment system to elucidate the mechanism by which Zn-protoporphyrin IX is formed in nitrite-free dry-cured ham. Meat Sci. 2004, 68, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Iacumin, L.; Cattaneo, P.; Zuccolo, C.; Galanetto, S.; Acquafredda, A.; Comi, G. Natural levels of nitrites and nitrates in San Daniele dry cured ham PDO, and in meat, salt and sugna used for its production. Food Control. 2019, 100, 257–261. [Google Scholar] [CrossRef]
- Iammarino, M.; Di Taranto, A.; Cristino, M. Endogenous levels of nitrites and nitrates in wide consumption foodstuffs: Results of five years of official controls and monitoring. Food Chem. 2013, 140, 763–771. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Cordray, J.C.; Sebranek, J.G.; Love, J.A.; Ahn, D.U. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham. J. Food Sci. 2007, 72, 388–395. [Google Scholar] [CrossRef]
- Aschebrook-Kilfoy, B.; Shu, X.O.; Gao, Y.T.; Ji, B.T.; Yang, G.; Li, H.L.; Ward, M.H. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women’s health study. Int. J. Cancer 2013, 132, 897–904. [Google Scholar] [CrossRef]
- Van Hecke, T.; Vossen, E.; Hemeryck, L.Y.; Bussche, J.V.; Vanhaecke, L.; De Smet, S. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer. Food Chem. 2015, 187, 29–36. [Google Scholar] [CrossRef]
- Bastide, N.M.; Chenni, F.; Audebert, M.; Santarelli, R.L.; Taché, S.; Naud, N.; Kuhnle, G.G. A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 2015, 75, 870–879. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Stu, J.; Tang, H.; Hassan, M.M.; Daniel, C.R.; Li, D. Dietary N-nitroso compounds and risk of pancreatic cancer: Results from a large case–control study. Carcinogenesis 2018, 40, 254–262. [Google Scholar] [CrossRef]
- Cross, A.J.; Harnly, J.M.; Ferrucci, L.M.; Risch, A.; Mayne, S.T.; Sinha, R. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr. Sci. 2012, 3, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Hooda, J.; Shah, A.; Zhang, L. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes. Nutrients 2014, 6, 1080–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FL0 | FL50 | FL100 | FL150 | |
---|---|---|---|---|
Sodium nitrate (mg kg−1) | 0 | 50 | 100 | 150 |
Production conditions | fermentation chambers under controlled humidity (RH) and temperature (T) | |||
Stage 1 T 20–22 °C RH 55–63% 3 days | Stage 2 T 14–16 °C RH 68–75% 3 days | Stage 3 T 13 °C RH 76% 24 days | ||
Storage conditions | vacuum packed, 4 °C, 6 months |
Raw Material (Meat) | ||
---|---|---|
Proximate chemical composition [%] | Fat | 3.92 ± 0.83 |
Protein | 21.30 ± 0.99 | |
Moisture | 73.45 ± 1.81 | |
Collagen | 1.08 ± 0.64 | |
Basic technological parameters | pH | 5.28 ± 0.02 |
aw | 0.989 ± 0.003 | |
L* | 63.71 ± 4.64 | |
a* | 6.21 ± 1.29 | |
b* | 15.60 ± 1.30 | |
Total pigment content [mg kg−1] | 72.31 ± 4.27 | |
Heme iron content [mg kg−1] | 6.30 ± 0.40 | |
TBARS [mg kg−1] | 0.41 ± 0.03 |
Component [%] | FL0 | FL50 | FL100 | FL150 |
---|---|---|---|---|
Fat | 4.21 ± 0.24 | 4.39 ± 0.48 | 3.86 ± 0.42 | 4.80 ± 0.53 |
Protein | 27.82 ± 0.71 | 28.57 ± 0.73 | 28.91 ± 0.73 | 26.72 ± 0.68 |
Moisture | 66.29 ± 3.41 | 65.15 ± 3.26 | 65.51 ± 3.28 | 66.43 ± 3.32 |
Collagen | 0.78 ± 0.19 | 0.72 ± 0.15 | 0.76 ± 0.13 | 1.05 ± 0.21 |
Salt | 1.73 ± 0.13 | 1.73 ± 0.11 | 1.81 ± 0.11 | 1.73 ± 0.08 |
Storage Time [Month] | FL0 | FL50 | FL100 | FL150 | |
---|---|---|---|---|---|
aw | 0 | 0.936 ± 0.003 a,C | 0.940 ± 0.002 a,B | 0.935 ± 0.006 a,B | 0.936 ± 0.003 a,B |
1 | 0.926 ± 0.004 a,B | 0.928 ± 0.005 a,A | 0.935 ± 0.006 a,B | 0.923 ± 0.010 a,A | |
4 | 0.926 ± 0.006 a,B | 0.928 ± 0.005 a,A | 0.934 ± 0.005 a,B | 0.927 ± 0.002 a,A | |
6 | 0.917 ± 0.003 a,A | 0.922 ± 0.003 a,A | 0.920 ± 0.002 a,A | 0.921 ± 0.003 a,A | |
pH | 0 | 5.86 ± 0.05 a,A | 5.84 ± 0.06 a,A | 5.76 ± 0.07 b,A | 5.74 ± 0.05 b,A |
1 | 5.95 ± 0.18 a,A | 5.92 ± 0.11 a,A | 5.93 ± 0.11 a,A | 5.72 ± 0.15 a,A | |
4 | 6.14 ± 0.15 a,A | 6.03 ± 0.13 a,A | 6.08 ± 0.12 a,B | 6.00 ± 0.10 a,B | |
6 | 5.96 ± 0.08 a,A | 5.87 ± 0.08 a,A | 5.86 ± 0.07 a,A | 5.82 ± 0.06 a,A |
Storage Time [Month] | FL0 | FL50 | FL100 | FL150 | |
---|---|---|---|---|---|
TBARS [mg kg−1] | 0 | 1.63 ± 0.13 b,A,B | 1.40 ± 0.12 b,A | 1.20 ± 0.11 a,B | 1.04 ± 0.13 a,A |
1 | 1.80 ± 0.46 b,B,C | 1.88 ± 0.18 b,B | 1.16 ± 0.10 a,A | 1.13 ± 0.06 a,A | |
4 | 2.27 ± 0.66 a,C | 2.60 ± 0.46 a,C | 2.22 ± 0.86 a,C | 2.26 ± 0.52 a,C | |
6 | 1.51 ± 0.05 a,A | 1.47 ± 0.05 a,A | 1.60 ± 0.06 a,B | 1.64 ± 0.07 a,B | |
Total pigment content [mg kg−1] | 0 | 109.7 ± 18.4 a,B | 101.8 ± 6.4 a,B | 96.6 ± 5.9 a,B | 91.7 ± 10.9 a,B |
1 | 65.4 ± 9.1 a,A | 60.6 ± 2.8 a,A | 65.7 ± 8.2 a,A | 66.5 ± 8.1 a,A | |
4 | 72.1 ± 11.9 a,A | 69.6 ± 6.2 a,A | 63.6 ± 3.5 a,A | 65.0 ± 6.4 a,A | |
6 | 68.3 ± 12.4 a,A | 71.2 ± 4.1 a,A | 69.9 ± 3.7 a,A | 68.1 ± 5.9 a,A | |
Heme iron content [mg kg−1] | 0 | 9.7 ± 2.5 a,B | 9.0 ± 0.6 a,B | 8.5 ± 0.5 a,B | 7.4 ± 1.0 a,B |
1 | 4.9 ± 0.8 a,A | 5.3 ± 0.2 a,A | 5.8 ± 1.6 a,A | 4.2 ± 1.7 a,A | |
4 | 7.1 ± 1.7 a,A | 6.1 ± 0.5 a,A | 5.6 ± 0.3 a,A | 5.4 ± 0.2 a,A | |
6 | 6.0 ± 0.2 a,A | 6.3 ± 0.4 a,A | 6.2 ± 0.1 a,A | 4.7 ± 0.5 a,A |
Storage Time [Month] | |||||
---|---|---|---|---|---|
0 | 1 | 4 | 6 | ||
L* | FL0 | 51.51 ± 4.07 a,A | 51.42 ± 1.62 a,A | 43.86 ± 5.53 a,B | 40.58 ± 1.22 a,B |
FL50 | 47.14 ± 2.40 a,A | 43.89 ± 4.35 b,B | 40.66 ± 3.19 a,B,C | 37.62 ± 1.39 a,C | |
FL100 | 45.84 ± 2.75 b,A | 41.60 ± 4.58 b,A | 43.99 ± 2.64 a,A | 40.74 ± 1.16 a,A | |
FL150 | 42.48 ± 2.56 b,A | 51.14 ± 4.75 a,B | 44.38 ± 2.90 a,A | 41.31 ± 0.93 a,A | |
a* | FL0 | 2.20 ± 0.93 a,A | 4.19 ± 0.59 a,B | 4.89 ± 1.18 a,B | 4.72 ± 0.68 a,B |
FL50 | 6.30 ± 0.57 b,A | 8.25 ± 0.98 b,B | 7.43 ± 0.47 b,B | 8.05 ± 0.83 b,B | |
FL100 | 6.26 ± 0.90 b,A | 5.52 ± 1.71 a,A | 5.32 ± 1.15 a,A | 7.19 ± 0.56 b,B | |
FL150 | 4.94 ± 0.76 b,A | 5.80 ± 1.06 a,A | 6.96 ± 1.28 b,a,B | 5.85 ± 1.10 b,A | |
b* | FL0 | 8.30 ± 1.10 a,A | 9.89 ± 0.65 a,A | 8.61 ± 1.99 a,A | 7.30 ± 0.57 a,A |
FL50 | 7.22 ± 0.87 a,A | 8.43 ± 1.27 a,A | 8.09 ± 0.85 a,A | 7.93 ± 0.72 a,A | |
FL100 | 7.32 ± 0.69 a,A | 6.34 ± 0.77 a,A | 7.10 ± 1.37 a,A | 8.87 ± 0.93 a,B | |
FL150 | 5.83 ± 1.08 a,A | 9.24 ± 1.46 a,B | 8.40 ± 0.89 a,B | 7.66 ± 1.07 a,B | |
∆E | FL0 | 14.77 ± 1.69 a,C | 2.54 ± 0.44 a,A | 7.68 ± 1.04 b,B | 3.53 ± 0.98 a,A |
FL50 | 18.31 ± 1.34 b,B | 3.97 ± 1.01 a,A | 3.35 ± 0.23 a,A | 3.11 ± 1.00 a,A | |
FL100 | 16.69 ± 1.52 a,b,B | 4.41 ± 0.74 a,A | 2.47 ± 0.75 a,A | 4.67 ± 1.04 a,A | |
FL150 | 23.28 ± 2.04 c,C | 9.75 ± 0.94 b,B | 6.85 ± 1.09 b,B | 3.34 ± 0.84 a,A |
Parameter | FL0 | FL50 | FL100 | FL150 |
---|---|---|---|---|
N-Nitrosodibutylamin (NDBA) [µg kg−1] | <5 | <5 | <5 | <5 |
N-Nitrosodiethylamin (NDEA) [µg kg−1] | <5 | <5 | <5 | <5 |
N-Nitrosodimethylamin (NDMA) [µg kg−1] | <5 | <5 | <5 | <5 |
N-Nitrosodipropylamin (NDPA) [µg kg−1] | <5 | <5 | <5 | <5 |
N-Nitrosomorpholin (NMOR) [µg kg−1] | <5 | <5 | <5 | <5 |
N-Nitrosopiperidin (NPIP) [µg kg−1] | <5 | <5 | <5 | <5 |
N-Nitrosopyrrolidin [µg kg−1] | <5 | <5 | <5 | <5 |
NaNO2 [mg kg−1] | <10 | <10 | <10 | <10 |
NaNO3 [mg kg−1] | <10 | 11.0 ± 2.0 | 17.0 ± 2.0 | 19.0 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowska, M.; Stadnik, J.; Wójciak, K. The Effect of Different Levels of Sodium Nitrate on the Physicochemical Parameters and Nutritional Value of Traditionally Produced Fermented Loins. Appl. Sci. 2021, 11, 2983. https://doi.org/10.3390/app11072983
Karwowska M, Stadnik J, Wójciak K. The Effect of Different Levels of Sodium Nitrate on the Physicochemical Parameters and Nutritional Value of Traditionally Produced Fermented Loins. Applied Sciences. 2021; 11(7):2983. https://doi.org/10.3390/app11072983
Chicago/Turabian StyleKarwowska, Małgorzata, Joanna Stadnik, and Karolina Wójciak. 2021. "The Effect of Different Levels of Sodium Nitrate on the Physicochemical Parameters and Nutritional Value of Traditionally Produced Fermented Loins" Applied Sciences 11, no. 7: 2983. https://doi.org/10.3390/app11072983
APA StyleKarwowska, M., Stadnik, J., & Wójciak, K. (2021). The Effect of Different Levels of Sodium Nitrate on the Physicochemical Parameters and Nutritional Value of Traditionally Produced Fermented Loins. Applied Sciences, 11(7), 2983. https://doi.org/10.3390/app11072983