Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Alkali-Activated Materials and Monoliths Preparation
2.2. Mine Wastewater Model Solutions
3. Results
3.1. Porous Monoliths Characterization
3.2. Filtration Tests: Effect of the Operating Parameters
3.3. Metal Capture in Mono-Ionic and Multi-Ionic Solutions
3.4. Electron Paramagnetic Analysis of Exhausted Monoliths
- a resonance line at g = 4.3 due to isolated Fe3+ centers located in sites with distorted octahedral symmetry;
- a very large and intense signal at g ≈ 2.0 (linewidth ΔH ≈ 1700 G), attributed to Fe3+ centers interacting by dipole-dipole in distorted octahedral or tetrahedral sites or to super-exchange coupled Fe3+ pairs [33], which may be related to the presence of a minor amount of an iron-oxygen phase;
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. CHAPTER 1 Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. In Heavy Metals in Water: Presence, Removal and Safety; The Royal Society of Chemistry: London, UK, 2015; pp. 1–24. ISBN 978-1-84973-885-9. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 1993; ISBN 9789241549950. [Google Scholar]
- Kauppila, P.; Liisa Räisänen, M.; Myllyoja, S. Best Environmental Practices in Metal Ore Mining; Finnish Environment Institute: Helsinki, Finland, 2011; ISBN 978-952-11-4188-1. [Google Scholar]
- Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääskeläinen, H.; Haque, N. Water footprinting and mining: Where are the limitations and opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Werner, T.T.; Haque, N.; Yellishetty, M. Sustainable water management and improved corporate reporting in mining. Water Resour. Ind. 2019, 21, 100104. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Gunatilake, S. Methods of Removing Heavy Metals from Industrial Wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 14. [Google Scholar]
- Iannicelli-Zubiani, E.M.; Cristiani, C.; Dotelli, G.; Gallo Stampino, P.; Pelosato, R.; Mesto, E.; Schingaro, E.; Lacalamita, M. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters. Waste Manag. 2015, 46, 546–556. [Google Scholar] [CrossRef]
- Iannicelli-Zubiani, E.M.; Cristiani, C.; Dotelli, G.; Stampino, P.G.; Bengo, I. Lanthanum uptake by clays and organo-clays: Effect of the polymer. Procedia Environ. Sci. Eng. Manag. 2014, 1, 25. [Google Scholar]
- Iannicelli-Zubiani, E.M.; Cristiani, C.; Dotelli, G.; Stampino, P.G.; Pelosato, R.; Finocchio, E. Effect of pH in the synthesis of organo-clays for rare earths removal. Environ. Eng. Manag. J. 2017, 16, 1719–1727. [Google Scholar] [CrossRef]
- Iannicelli-Zubiani, E.M.; Gallo Stampino, P.; Cristiani, C.; Dotelli, G. Enhanced lanthanum adsorption by amine modified activated carbon. Chem. Eng. J. 2018, 341, 75–82. [Google Scholar] [CrossRef]
- Latorrata, S.; Cristiani, C.; Basso Peressut, A.; Brambilla, L.; Bellotto, M.; Dotelli, G.; Finocchio, E.; Gallo Stampino, P.; Ramis, G. Reduced Graphene Oxide Membranes as Potential Self-Assembling Filter for Wastewater Treatment. Minerals 2021, 11, 15. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef] [PubMed]
- Iakovleva, E.; Sillanpää, M. The use of low-cost adsorbents for wastewater purification in mining industries. Environ. Sci. Pollut. Res. 2013, 20, 7878–7899. [Google Scholar] [CrossRef] [PubMed]
- THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 24 March 2021).
- Barella, S.; Bondi, E.; Di Cecca, C.; Ciuffini, A.F.; Gruttadauria, A.; Mapelli, C.; Mombelli, D. New perspective in steelmaking activity to increase competitiveness and reduce enviromental impact. Metall. Ital. 2014, 106, 31–39. [Google Scholar]
- Mombelli, D.; Barella, S.; Gruttadauria, A.; Mapelli, C. Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge. Appl. Sci. 2019, 9, 4902. [Google Scholar] [CrossRef] [Green Version]
- Krivenko, P. Why Alkaline Activation—60 Years of the Theory and Practice of Alkali-Activated Materials. J. Ceram. Sci. Technol. 2017, 8, 323–334. [Google Scholar] [CrossRef]
- Davidovits, J. Synthetic Mineral Polymer Compound of the Silicoaluminates Family and Preparation Process. U.S. Patent 4,472,199, 18 September 1984. [Google Scholar]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Luukkonen, T.; Heponiemi, A.; Runtti, H.; Pesonen, J.; Yliniemi, J.; Lassi, U. Application of alkali-activated materials for water and wastewater treatment: A review. Rev. Environ. Sci. Biotechnol. 2019, 18, 271–297. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2020; ISBN 9782954453118. [Google Scholar]
- Miricioiu, M.G.; Niculescu, V.C.; Filote, C.; Raboaca, M.S.; Nechifor, G. Coal fly ash derived silica nanomaterial for mmms-application in CO2/CH4 separation. Membranes 2021, 11, 78. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Niculescu, V.-C. Fly Ash, from Recycling to Potential Raw Material for Mesoporous Silica Synthesis. Nanomaterials 2020, 10, 474. [Google Scholar] [CrossRef] [Green Version]
- Novais, R.M.; Pullar, R.C.; Labrincha, J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Ricciotti, L.; Occhicone, A.; Petrillo, A.; Ferone, C.; Cioffi, R.; Roviello, G. Geopolymer-based hybrid foams: Lightweight materials from a sustainable production process. J. Clean. Prod. 2020, 250, 119588. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 2016, 318, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.W.; Lee, M.L.; Ko, M.S.; Ueng, T.H.; Yang, S.F. The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 2012, 56, 90–96. [Google Scholar] [CrossRef]
- Samarina, T.; Takaluoma, E. Metakaolin-Based Geopolymers for Removal of Ammonium from Municipal Wastewater. In Proceedings of the 5th World Congress on New Technologies, Lisbon, Portugal, 18–20 August 2019; pp. 195-1–195-5. [Google Scholar]
- Ke, X.; Bernal, S.A.; Provis, J.L. Uptake of chloride and carbonate by Mg-Al and Ca-Al layered double hydroxides in simulated pore solutions of alkali-activated slag cement. Cem. Concr. Res. 2017, 100, 1–13. [Google Scholar] [CrossRef]
- Luukkonen, T.; Runtti, H.; Niskanen, M.; Tolonen, E.-T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J. Environ. Manag. 2016, 166, 579–588. [Google Scholar] [CrossRef]
- Le Cornec, D.; Galoisy, L.; Izoret, L.; Cormier, L.; Trcera, N.; Calas, G. Structural role of titanium on slag properties. J. Am. Ceram. Soc. 2021, 104, 105–113. [Google Scholar] [CrossRef]
- Ardelean, I.; Pǎşcuţǎ, P.; Giurgiu, L.V. EPR and magnetic susceptibility investigations of Fe2O3-B2O3-KCl glasses. Int. J. Mod. Phys. B 2003, 17, 3049–3056. [Google Scholar] [CrossRef]
- Scotti, R.; D’Arienzo, M.; Testino, A.; Morazzoni, F. Photocatalytic mineralization of phenol catalyzed by pure and mixed phase hydrothermal titanium dioxide. Appl. Catal. B Environ. 2009, 88, 497–504. [Google Scholar] [CrossRef]
- He, H.P.; Guo, J.G.; Xie, X.D.; Peng, J.L. Location and migration of cations in Cu2+-adsorbed montmorillonite. Environ. Int. 2001, 26, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Cristiani, C.; Iannicelli-Zubiani, E.M.; Bellotto, M.; Dotelli, G.; Stampino, P.G.; Latorrata, S.; Ramis, G.; Finocchio, E. Capture Mechanism of La and Cu Ions in Mixed Solutions by Clay and Organoclay. Ind. Eng. Chem. Res. 2021. [Google Scholar] [CrossRef]
- Cristiani, C.; Iannicelli-Zubiani, E.M.; Bellotto, M.; Dotelli, G.; Finocchio, E.; Latorrata, S.; Ramis, G.; Gallo Stampino, P. Capture and release mechanism of la ions by new polyamine-based organoclays: A model system for rare-earths recovery in urban mining process. J. Environ. Chem. Eng. 2021, 9, 104730. [Google Scholar] [CrossRef]
- Iannicelli-Zubiani, E.M.; Giani, M.I.; Recanati, F.; Dotelli, G.; Puricelli, S.; Cristiani, C. Environmental impacts of a hydrometallurgical process for electronic waste treatment: A life cycle assessment case study. J. Clean. Prod. 2017, 140, 1204–1216. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zhang, Z.; Wang, H.; Zhou, S.; Zhou, W. A comparative study on fly ash, geopolymer and faujasite block for Pb removal from aqueous solution. Fuel 2016, 185, 181–189. [Google Scholar] [CrossRef]
- Petlitckaia, S.; Barré, Y.; Piallat, T.; Grauby, O.; Ferry, D.; Poulesquen, A. Functionalized geopolymer foams for cesium removal from liquid nuclear waste. J. Clean. Prod. 2020, 269, 122400. [Google Scholar] [CrossRef]
- Balintova, M.; Petrilakova, A. Study of pH Influence on Selective Precipitation of Heavy Metals from Acid Mine Drainage. Chem. Eng. Trans. 2011, 25, 345–350. [Google Scholar] [CrossRef]
Oxide Type | Oxide Content in Blast Furnace Slag (% w/w) | Oxide Content in Calcium Aluminate Cement (% w/w) |
---|---|---|
SiO2 | 36.23 | 0.35 |
Al2O3 | 10.70 | 80.73 |
CaO | 40.92 | 16.97 |
MgO | 7.41 | 0.46 |
Fe2O3 | 0.72 | 0.20 |
TiO2 | 0.68 | 0.23 |
MnO | 0.27 | – |
K2O | 0.45 | 0.37 |
Na2O | 0.22 | 0.31 |
P2O5 | 0.01 | – |
others | 2.39 | 0.38 |
Component | Effect | Content |
---|---|---|
Blust Furnace Slag | Aluminosilicates source | 80% (w/w) |
Cement CAC-80 | Aluminosilicates source, weak alkali, binder | 20% (w/w) |
Li2CO3 | setting accelerator | 0.02% (w/w) |
H2O2 | Bubbles generator | 2% (v/v) |
H2O/total solids | 0.004% (w/w) | |
H2O2/H2O | Bubbles generator | 0.02 (v/v) |
Cocamidopropyl betaine (COCA) | Surfactant | 0.0125 g 0.084% (g/100 mL liquid) |
Myristic acid (MYRAC) | Surfactant | 0.0022 (g) 0.015% (g/100 mL liquid) |
COCA/MYRAC | Surfactant, bubbles stabilizer | 15/85 (w/w) |
Liquid/Solid | 0.4 |
Mono-Ionic Solution | Allowed EU Limits | |||
---|---|---|---|---|
(mmol/L) | (mg/L) | pH | (mg/L) | |
Cu(II) | 0.063 | 3.97 | 5.3 | 3 |
Fe(III) | 0.072 | 4.03 | 3.8 | 1–3 |
Ni(II) | 0.0094 | 0.55 | 5.2 | <0.1 |
Mn(II) | 0.019 | 1.05 | 5.3 | <0.1 |
Multi-Ion Solution | ||||
Cu(II) | 0.063 | 3.97 | 3.6 | |
Fe(III) | 0.072 | 4.03 | ||
Ni(II) | 0.0094 | 0.55 | ||
Mn(II) | 0.019 | 1.05 |
Morphological Characteristics | |
Pore Volume = 0.46 cm3/g | |
Surface Area = 13 m2/g | |
Average Pores Diameters = 0.14 µm | |
Bulk density = 1.1 g/mL | |
Porosity = 48.7% | |
Prepared Monoliths | |
PGM 1 | Volume = 54.7 cm3, weight = 29 g |
PGM 2 | Volume = 87.4 cm3, weight = 46 g |
Ion | pH 2–4 | pH 4–10 | pH 10–14 |
---|---|---|---|
Cu | Cu2+ | Cu2+, CuOH+, Cu2(OH)22+, CuO | CuO, Cu(OH)3−, Cu(OH)42−, Cu(OH)2 |
Fe | Fe3+, Fe(OH)2+, FeOH2+ | Fe2O3 | Fe2O3, Fe(OH)4− |
Ni | Ni2+ | NiOH+, Ni(OH)3− | Ni(OH)2, Ni(OH)3−, Ni(OH)42− |
Mn | Mn2+ | Mn2+, MnOH−, Mn2(OH)3+, Mn(OH)2 | Mn(OH)2, Mn(OH)3−, Mn(OH)42− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latorrata, S.; Balzarotti, R.; Adami, M.I.; Marino, B.; Mostoni, S.; Scotti, R.; Bellotto, M.; Cristiani, C. Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag. Appl. Sci. 2021, 11, 2985. https://doi.org/10.3390/app11072985
Latorrata S, Balzarotti R, Adami MI, Marino B, Mostoni S, Scotti R, Bellotto M, Cristiani C. Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag. Applied Sciences. 2021; 11(7):2985. https://doi.org/10.3390/app11072985
Chicago/Turabian StyleLatorrata, Saverio, Riccardo Balzarotti, Maria Isabella Adami, Bianca Marino, Silvia Mostoni, Roberto Scotti, Maurizio Bellotto, and Cinzia Cristiani. 2021. "Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag" Applied Sciences 11, no. 7: 2985. https://doi.org/10.3390/app11072985
APA StyleLatorrata, S., Balzarotti, R., Adami, M. I., Marino, B., Mostoni, S., Scotti, R., Bellotto, M., & Cristiani, C. (2021). Wastewater Treatment Using Alkali-Activated-Based Sorbents Produced from Blast Furnace Slag. Applied Sciences, 11(7), 2985. https://doi.org/10.3390/app11072985