Color Image Self-Recovery and Tampering Detection Scheme Based on Fragile Watermarking with High Recovery Capability
Abstract
:1. Introduction
- (a)
- A minimum number of bits used for recovery and tamper detection: the recovery bits should be embedded redundantly, thus avoiding the tampering coincidence problem.
- (b)
- Watermark imperceptibility: the embedded recovery and authentication bits must not affect the visual quality of a watermarked image.
- (c)
- Precise tamper detection: a majority of intentional modifications should be accurately detected.
- (d)
- Precise recovery of tampered regions: the reconstructed image must demonstrate acceptable visual and objective quality in the reconstructed areas.
2. Related Works
3. Designed Scheme
3.1. Image Protection
3.1.1. Watermarking Generation for Reconstruction and Authentication Purposes
Pseudocode 1 Recovery and authentication watermark generation |
Input: Image to be processed Ih For to do For to do End for End for |
Output: Recovery watermark recoveryW; Authentication watermark autentW |
3.1.2. Watermark Embedding
Pseudocode 2 Watermark embedding |
Input: Image (single channel) to process Ih; Seed S; Bit plane bit Plane; Recovery watermarks wr, wg and wb; Authentication watermark aut For step 4 to do For step 4 to do End for End for |
Output: Watermarked image Ihw |
3.2. Authentication and Reconstruction
3.2.1. Watermark Extraction
Pseudocode 3 Extraction of image watermarks |
Input: Watermarked image channel Ihw; Seed S; Bit plane bit Plane For step 4 to do For step 4 to do End for End for |
Output: Recovery image iRGB; Authentication watermark aut |
3.2.2. Authentication
3.2.3. Post-Processing and Recovery
Pseudocode 4 Detection of tampering coincidence problem |
Input: Authentication image autent Img; Seed S |
Output: Tampering coincidence problem image TCP |
Pseudocode 5 Inpainting application |
Input: Image to be processed iR; Binary image iTCP End While |
Output: Image after inpainting process iRecovery |
3.3. Implementation of the Algorithms
Pseudocode 6 Image protection |
Input: Image (RGB) to be protected Ih; LSB plane N |
Output: Watermarked image Ihw |
Pseudocode 7 Image authentication and recovery |
Input: Suspicious image (RGB) Ihw; LSB plane N |
Output: Restored image Ihw |
4. Experimental Setup
5. Analysis of 1-LSB, 2-LSB and 3-LSB Schemes in Embedding Stage
6. Experimental Results and Discussion
6.1. Watermarked Image Quality
6.2. Analysis of Tampering Detection
6.3. Evaluation of the Reconstruction under Different Tampering Rates
6.4. Evaluation of the Image Reconstruction under Multiple and Irregular Attacks
6.5. Comparison with State-of-the-Art Schemes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Wang, Y.; Ma, B.; Zhang, Z. A novel self-recovery fragile watermarking scheme based on dual-redundant-ring structure. Comput. Electr. Eng. 2011, 37, 927–940. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K. Effective self-embedding watermarking scheme for image tampered detection and localization with recovery capability. J. Vis. Commun. Image Represent. 2016, 38, 775–789. [Google Scholar] [CrossRef]
- Wu, W.-C.; Lin, Z.-W. SVD-based self-embedding image authentication scheme using quick response code features. J. Vis. Commun. Image Represent. 2016, 38, 18–28. [Google Scholar] [CrossRef]
- Qi, X.; Xin, X. A quantization-based semi-fragile watermarking scheme for image content authentication. J. Vis. Commun. Image Represent. 2011, 22, 187–200. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, K.-N.; Lee, C.-F.; Liu, L.-J. A secure fragile watermarking scheme based on chaos-and-hamming code. J. Syst. Softw. 2011, 84, 1462–1470. [Google Scholar] [CrossRef]
- Liu, S.-H.; Yao, H.-X.; Gao, W.; Liu, Y.-L. An image fragile watermark scheme based on chaotic image pattern and pixel-pairs. Appl. Math. Comput. 2007, 185, 869–882. [Google Scholar] [CrossRef]
- Chaluvadi, S.B.; Prasad, M.V.N.K. Efficient image tamper detection and recovery technique using dual watermark. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC); Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2009; pp. 993–998. [Google Scholar]
- Zhang, X.; Qian, Z.; Ren, Y.; Feng, G. Watermarking with Flexible Self-Recovery Quality Based on Compressive Sensing and Compositive Reconstruction. IEEE Trans. Inf. Forensics Secur. 2011, 6, 1223–1232. [Google Scholar] [CrossRef]
- He, H.; Chen, F.; Tai, H.-M.; Kalker, T.; Zhang, J. Performance Analysis of a Block-Neighborhood-Based Self-Recovery Fragile Watermarking Scheme. IEEE Trans. Inf. Forensics Secur. 2011, 7, 185–196. [Google Scholar] [CrossRef]
- Tong, X.; Liu, Y.; Zhang, M.; Chen, Y. A novel chaos-based fragile watermarking for image tampering detection and self-recovery. Signal Process. Image Commun. 2013, 28, 301–308. [Google Scholar] [CrossRef]
- Qian, Z.; Feng, G. Inpainting Assisted Self Recovery With Decreased Embedding Data. IEEE Signal Process. Lett. 2010, 17, 929–932. [Google Scholar] [CrossRef]
- Qin, C.; Chang, C.-C.; Chen, K.-N. Adaptive self-recovery for tampered images based on VQ indexing and inpainting. Signal Process. 2013, 93, 933–946. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Ma, B.; Zhang, Z. Tamper detection and self-recovery of biometric images using salient region-based authentication watermarking scheme. Comput. Stand. Interfaces 2012, 34, 367–379. [Google Scholar] [CrossRef]
- He, H.-J.; Zhang, J.-S.; Tai, H.-M. Self-recovery Fragile Watermarking Using Block-Neighborhood Tampering Characterization. In Computer Vision; Springer International Publishing: Berlin/Heidelberg, Germany, 2009; Volume 5806, pp. 132–145. [Google Scholar]
- Dadkhah, S.; Manaf, A.A.; Hori, Y.; Hassanien, A.E.; Sadeghi, S. An effective SVD-based image tampering detection and self-recovery using active watermarking. Signal Process. Image Commun. 2014, 29, 1197–1210. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Qian, Z.; Feng, G. Reference Sharing Mechanism for Watermark Self-Embedding. IEEE Trans. Image Process. 2011, 20, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-Y.; Lin, S.D. Dual watermark for image tamper detection and recovery. Pattern Recognit. 2008, 41, 3497–3506. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Qian, Z.; Feng, G. Self-embedding watermark with flexible restoration quality. Multimed. Tools Appl. 2011, 54, 385–395. [Google Scholar] [CrossRef]
- Bravo-Solorio, S.; Nandi, A.K. Secure fragile watermarking method for image authentication with improved tampering localisation and self-recovery capabilities. Signal Process. 2011, 91, 728–739. [Google Scholar] [CrossRef]
- Wang, C.-P.; Wang, X.-Y.; Xia, Z.-Q.; Zhang, C.; Chen, X.-J. Geometrically resilient color image zero-watermarking algorithm based on quaternion Exponent moments. J. Vis. Commun. Image Represent. 2016, 41, 247–259. [Google Scholar] [CrossRef]
- Hsu, L.-Y.; Hu, H.-T. Blind image watermarking via exploitation of inter-block prediction and visibility threshold in DCT domain. J. Vis. Commun. Image Represent. 2015, 32, 130–143. [Google Scholar] [CrossRef]
- Munoz-Ramirez, D.O.; Reyes-Reyes, R.; Ponomaryov, V.; Cruz-Ramos, C. Invisible digital color watermarking technique in anaglyph 3D images. In Proceedings of the 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 28–30 October 2015; pp. 1–6. [Google Scholar]
- Fan, M.; Wang, H. An enhanced fragile watermarking scheme to digital image protection and self-recovery. Signal Process. Image Commun. 2018, 66, 19–29. [Google Scholar] [CrossRef]
- Tai, W.-L.; Liao, Z.-J. Image self-recovery with watermark self-embedding. Signal Process. Image Commun. 2018, 65, 11–25. [Google Scholar] [CrossRef]
- Chamlawi, R.; Khan, A.; Usman, I. Authentication and recovery of images using multiple watermarks. Comput. Electr. Eng. 2010, 36, 578–584. [Google Scholar] [CrossRef]
- Chamlawi, R.; Khan, A. Digital image authentication and recovery: Employing integer transform based information embedding and extraction. Inf. Sci. 2010, 180, 4909–4928. [Google Scholar] [CrossRef]
- Chamlawi, R.; Khan, A.; Idris, A. Wavelet Based Image Authentication and Recovery. J. Comput. Sci. Technol. 2007, 22, 795–804. [Google Scholar] [CrossRef]
- Qi, X.; Xin, X. A singular-value-based semi-fragile watermarking scheme for image content authentication with tamper localization. J. Vis. Commun. Image Represent. 2015, 30, 312–327. [Google Scholar] [CrossRef]
- Preda, R.O. Semi-fragile watermarking for image authentication with sensitive tamper localization in the wavelet domain. Measurement 2013, 46, 367–373. [Google Scholar] [CrossRef]
- Molina-Garcia, J.; Reyes-Reyes, R.; Ponomaryov, V.; Cruz-Ramos, C. Watermarking algorithm for authentication and self-recovery of tampered images using DWT. In Proceedings of the 2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), Kharkiv, Ukraine, 20–24 June 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Horng, S.-J.; Rosiyadi, D.; Li, T.; Takao, T.; Guo, M.; Khan, M.K. A blind image copyright protection scheme for e-government. J. Vis. Commun. Image Represent. 2013, 24, 1099–1105. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Liu, Y.-N.; Han, M.-M.; Yang, H.-Y. Local quaternion PHT based robust color image watermarking algorithm. J. Vis. Commun. Image Represent. 2016, 38, 678–694. [Google Scholar] [CrossRef]
- Dutta, T.; Gupta, H.P. A robust watermarking framework for High Efficiency Video Coding (HEVC)–Encoded video with blind extraction process. J. Vis. Commun. Image Represent. 2016, 38, 29–44. [Google Scholar] [CrossRef]
- Wang, R.-Z.; Lin, C.-F.; Lin, J.-C. Hiding data in images by optimal moderately-significant-bit replacement. Electron. Lett. 2000, 36, 2069. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, N.; Silvestri, F.; Egiazarian, K.; Carli, M.; Astola, J.; Lukin, V. On between coefficient contrast masking of DCT basis func-tions, CD-ROM. In Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale, AZ, USA, 25–26 January 2007. [Google Scholar]
- Molina-Garcia, J.; Garcia-Salgado, B.P.; Ponomaryov, V.; Reyes-Reyes, R.; Sadovnychiy, S.; Cruz-Ramos, C. An effective fragile watermarking scheme for color image tampering detection and self-recovery. Signal Process. Image Commun. 2020, 81, 115725. [Google Scholar] [CrossRef]
- Lin, C.-C.; He, S.-L.; Chang, C.-C. Pixel P Air-Wise Fragile Image Watermarking Based on HC-Based Absolute Moment Block Truncation Coding. Electron. 2021, 10, 690. [Google Scholar] [CrossRef]
- Kim, C.; Yang, C.-N. Self-Embedding Fragile Watermarking Scheme to Detect Image Tampering Using AMBTC and OPAP Approaches. Appl. Sci. 2021, 11, 1146. [Google Scholar] [CrossRef]
- Lee, C.-F.; Shen, J.-J.; Chen, Z.-R.; Agrawal, S. Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery. Sensors 2019, 19, 2267. [Google Scholar] [CrossRef] [Green Version]
- Kodak Photo CD, Photo Sampler. Available online: http://www.math.purdue.edu/~lucier/PHOTO_CD/ (accessed on 1 March 2021).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Yoon, H.; Park, K.-W. Acoustic-decoy: Detection of adversarial examples through audio modification on speech recognition system. Neurocomputing 2020, 417, 357–370. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. Random Untargeted Adversarial Example on Deep Neural Network. Symmetry 2018, 10, 738. [Google Scholar] [CrossRef] [Green Version]
No Bit Adjustment | With Bit Adjustment | ||||
---|---|---|---|---|---|
Embedding | 1-LSB | 2-LSB | 3-LSB | 2-LSB | 3-LSB |
PSNR | 51.17 | 43.89 | 37.51 | 44.33 | 37.69 |
SSIM | 0.9966 | 0.9824 | 0.9314 | 0.9843 | 0.9340 |
PSNR-HVS | 59.21 | 49.89 | 41.80 | 49.69 | 41.92 |
Embedding | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|---|
Recall | 1-LSB | 0.9033 | 0.9211 | 0.9369 | 0.9345 | 0.9356 | 0.9386 | 0.9404 | 0.9389 | 0.9384 |
2-LSB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
3-LSB | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.9999 | |
Precision | 1-LSB | 0.9466 | 0.9733 | 0.9831 | 0.988 | 0.9943 | 0.9913 | 0.9922 | 0.9932 | 0.9944 |
2-LSB | 0.9157 | 0.9585 | 0.9718 | 0.9799 | 0.9885 | 0.9849 | 0.9877 | 0.9892 | 0.9910 | |
3-LSB | 0.8893 | 0.9448 | 0.9637 | 0.9744 | 0.9843 | 0.9819 | 0.9855 | 0.9874 | 0.9900 |
Embedding | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|---|
PSNR | 1-LSB | 27.81 | 25.02 | 23.50 | 21.79 | 20.30 | 19.01 | 17.57 | 15.79 | 13.286 |
2-LSB | 35.80 | 32.71 | 30.63 | 29.25 | 28.13 | 27.06 | 26.00 | 24.82 | 23.07 | |
3-LSB | 35.52 | 32.48 | 30.43 | 29.08 | 28.03 | 27.06 | 26.22 | 25.27 | 23.68 | |
SSIM | 1-LSB | 0.953 | 0.903 | 0.851 | 0.787 | 0.713 | 0.629 | 0.533 | 0.410 | 0.250 |
2-LSB | 0.967 | 0.935 | 0.901 | 0.867 | 0.832 | 0.793 | 0.750 | 0.696 | 0.615 | |
3-LSB | 0.962 | 0.925 | 0.888 | 0.851 | 0.813 | 0.772 | 0.730 | 0.680 | 0.604 | |
PSNR-HVS-M | 1-LSB | 26.19 | 22.83 | 20.91 | 18.94 | 17.04 | 15.26 | 13.54 | 11.49 | 8.78 |
2-LSB | 33.29 | 30.19 | 28.14 | 26.69 | 25.57 | 24.37 | 23.02 | 21.32 | 18.87 | |
3-LSB | 33.25 | 30.18 | 28.15 | 26.73 | 25.69 | 24.71 | 23.76 | 22.35 | 19.90 |
With Bit Adjustment | Without Bit Adjustment | |||||
---|---|---|---|---|---|---|
PSNR | SSIM | PSNR-HVS | PSNR | SSIM | PSNR-HVS | |
Kodak-1 | 44.36 | 0.9923 | 52.49 | 43.93 | 0.9914 | 53.30 |
Kodak-2 | 43.87 | 0.9787 | 49.02 | 43.44 | 0.9756 | 50.17 |
Kodak-3 | 44.26 | 0.9762 | 48.02 | 43.81 | 0.9732 | 47.96 |
Kodak-4 | 44.30 | 0.9819 | 49.73 | 43.90 | 0.9798 | 50.05 |
Kodak-5 | 44.20 | 0.9922 | 50.89 | 43.83 | 0.9914 | 52.12 |
Kodak-6 | 44.41 | 0.9874 | 49.10 | 43.92 | 0.9859 | 48.82 |
Kodak-7 | 44.31 | 0.9817 | 48.99 | 43.92 | 0.9797 | 49.10 |
Kodak-8 | 44.41 | 0.9934 | 52.16 | 43.94 | 0.9925 | 52.50 |
Kodak-9 | 44.47 | 0.9790 | 49.10 | 44.02 | 0.9764 | 48.94 |
Kodak-10 | 44.45 | 0.9806 | 49.90 | 43.97 | 0.9783 | 49.57 |
Kodak-11 | 44.34 | 0.9854 | 50.99 | 43.84 | 0.9834 | 50.80 |
Kodak-12 | 44.34 | 0.9788 | 49.47 | 43.82 | 0.9761 | 48.84 |
Kodak-13 | 44.30 | 0.9948 | 52.49 | 43.88 | 0.9941 | 53.46 |
Kodak-14 | 44.27 | 0.9896 | 50.76 | 43.89 | 0.9884 | 51.67 |
Kodak-15 | 44.34 | 0.9800 | 48.10 | 43.92 | 0.9777 | 47.74 |
Kodak-16 | 44.32 | 0.9825 | 49.82 | 43.89 | 0.9805 | 49.87 |
Kodak-17 | 44.17 | 0.9819 | 48.40 | 43.84 | 0.9800 | 48.82 |
Kodak-18 | 44.14 | 0.9879 | 50.11 | 43.77 | 0.9865 | 51.20 |
Kodak-19 | 44.44 | 0.9842 | 51.12 | 43.96 | 0.9823 | 51.03 |
Kodak-20 | 44.89 | 0.9845 | 44.99 | 44.27 | 0.9832 | 44.32 |
Kodak-21 | 44.32 | 0.9828 | 49.16 | 43.91 | 0.9808 | 49.27 |
Kodak-22 | 44.41 | 0.9853 | 50.35 | 43.95 | 0.9834 | 50.38 |
Kodak-23 | 44.35 | 0.9758 | 48.43 | 43.94 | 0.9731 | 48.39 |
Kodak-24 | 44.27 | 0.9876 | 49.16 | 43.84 | 0.9862 | 49.20 |
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|
Kodak-1 | 0.9170 | 0.9629 | 0.9748 | 0.9840 | 0.9898 | 0.9850 | 0.9890 | 0.9903 | 0.9930 |
Kodak-2 | 0.9167 | 0.9631 | 0.9748 | 0.9844 | 0.9898 | 0.9851 | 0.9894 | 0.9904 | 0.9928 |
Kodak-3 | 0.9177 | 0.9625 | 0.9747 | 0.9840 | 0.9898 | 0.9850 | 0.9892 | 0.9904 | 0.9929 |
Kodak-4 | 0.9107 | 0.9454 | 0.9630 | 0.9673 | 0.9846 | 0.9845 | 0.9835 | 0.9857 | 0.9854 |
Kodak-5 | 0.9170 | 0.9625 | 0.9746 | 0.9841 | 0.9898 | 0.9852 | 0.9892 | 0.9903 | 0.9930 |
Kodak-6 | 0.9170 | 0.9629 | 0.9748 | 0.9841 | 0.9898 | 0.9851 | 0.9891 | 0.9906 | 0.9929 |
Kodak-7 | 0.9170 | 0.9627 | 0.9747 | 0.9840 | 0.9898 | 0.9850 | 0.9890 | 0.9906 | 0.9929 |
Kodak-8 | 0.9180 | 0.9629 | 0.9747 | 0.9840 | 0.9898 | 0.9852 | 0.9891 | 0.9904 | 0.9929 |
Kodak-9 | 0.9107 | 0.9454 | 0.9629 | 0.9676 | 0.9846 | 0.9842 | 0.9835 | 0.9856 | 0.9851 |
Kodak-10 | 0.9107 | 0.9450 | 0.9630 | 0.9670 | 0.9846 | 0.9844 | 0.9836 | 0.9859 | 0.9853 |
Kodak-11 | 0.9177 | 0.9627 | 0.9746 | 0.9841 | 0.9898 | 0.9850 | 0.9890 | 0.9903 | 0.9929 |
Kodak-12 | 0.9177 | 0.9627 | 0.9748 | 0.9841 | 0.9898 | 0.9851 | 0.9890 | 0.9904 | 0.9929 |
Kodak-13 | 0.9170 | 0.9629 | 0.9748 | 0.9841 | 0.9898 | 0.9852 | 0.9891 | 0.9903 | 0.9929 |
Kodak-14 | 0.9167 | 0.9640 | 0.9746 | 0.9843 | 0.9898 | 0.9853 | 0.9891 | 0.9903 | 0.9928 |
Kodak-15 | 0.9167 | 0.9627 | 0.9747 | 0.9842 | 0.9898 | 0.9851 | 0.9891 | 0.9905 | 0.9930 |
Kodak-16 | 0.9180 | 0.9629 | 0.9747 | 0.9843 | 0.9898 | 0.9851 | 0.9890 | 0.9904 | 0.9928 |
Kodak-17 | 0.9107 | 0.9452 | 0.9629 | 0.9674 | 0.9846 | 0.9840 | 0.9838 | 0.9857 | 0.9853 |
Kodak-18 | 0.9117 | 0.9455 | 0.9626 | 0.9671 | 0.9846 | 0.9841 | 0.9838 | 0.9857 | 0.9852 |
Kodak-19 | 0.9121 | 0.9446 | 0.9626 | 0.9678 | 0.9846 | 0.9841 | 0.9836 | 0.9857 | 0.9851 |
Kodak-20 | 0.9167 | 0.9634 | 0.9747 | 0.9842 | 0.9898 | 0.9850 | 0.9890 | 0.9903 | 0.9929 |
Kodak-21 | 0.9174 | 0.9633 | 0.9748 | 0.9842 | 0.9898 | 0.9850 | 0.9890 | 0.9903 | 0.9929 |
Kodak-22 | 0.9174 | 0.9625 | 0.9748 | 0.9840 | 0.9898 | 0.9850 | 0.9894 | 0.9905 | 0.9929 |
Kodak-23 | 0.9174 | 0.9627 | 0.9747 | 0.9841 | 0.9898 | 0.9851 | 0.9892 | 0.9904 | 0.9928 |
Kodak-24 | 0.9177 | 0.9629 | 0.9747 | 0.9840 | 0.9898 | 0.9851 | 0.9890 | 0.9904 | 0.9931 |
PSNR (dB) | SSIM | PSNR-HVS (dB) | |
---|---|---|---|
SR-HTR | 44.33 | 0.9843 | 49.69 |
Molina [36] | 44.32 | 0.9845 | 49.36 |
Fan [23] | 44.08 | 0.9832 | 50.09 |
Singh [2] | 37.85 | 0.9364 | 42.04 |
Tai [24] | 44.08 | 0.9832 | 50.07 |
Tong [10] | 37.85 | 0.9363 | 42.05 |
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|
SR-HTR | 0.9157 | 0.9585 | 0.9718 | 0.9799 | 0.9885 | 0.9849 | 0.9877 | 0.9892 | 0.9910 |
Molina [36] | 0.9152 | 0.9580 | 0.9716 | 0.9797 | 0.9884 | 0.9848 | 0.9876 | 0.9891 | 0.9909 |
Fan [23] | 0.8007 | 0.9210 | 0.9144 | 0.9483 | 1.0000 | 0.9601 | 0.9748 | 0.9659 | 0.9762 |
Singh [2] | 0.9855 | 1.0000 | 1.0000 | 0.9963 | 1.0000 | 0.9975 | 1.0000 | 1.0000 | 0.9983 |
Tai [24] | 0.9670 | 0.9855 | 0.9903 | 0.9939 | 1.0000 | 0.9943 | 0.9958 | 0.9963 | 0.9972 |
Tong [10] | 0.9855 | 1.0000 | 1.0000 | 0.9963 | 1.0000 | 0.9975 | 1.0000 | 1.0000 | 0.9983 |
SR-HTR | Molina [36] | Fan [23] | Singh [2] | Tai [24] | Tong [10] | |
---|---|---|---|---|---|---|
Kodak-4 | 0.9797 | 0.9782 | 0.9451 | 1 | 0.9939 | 1 |
Kodak-10 | 0.9148 | 0.9060 | 0.7573 | 1 | 0.9776 | 1 |
Kodak-17 | 0.9784 | 0.9770 | 0.7628 | 1 | 0.9779 | 1 |
Kodak-18 | 0.9243 | 0.9177 | 0.8951 | 1 | 0.9884 | 1 |
20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | ||
---|---|---|---|---|---|---|---|---|---|
PSNR | SR-HTR | 33.295 | 31.524 | 29.897 | 28.836 | 28.194 | 27.398 | 26.459 | 24.106 |
Molina [36] | 34.795 | 31.374 | 28.282 | 25.499 | 22.924 | 20.705 | 18.548 | 16.474 | |
Fan [23] | 29.166 | 22.849 | 20.16 | 17.142 | 13.604 | 11.855 | 9.565 | 8.295 | |
Singh [2] | 20.603 | 17.251 | 14.903 | 13.059 | 11.632 | 10.514 | 9.452 | 8.356 | |
Tai [24] | 16.567 | 14.556 | 13.312 | 12.017 | 10.914 | 9.971 | 9.018 | 7.998 | |
Tong [10] | 27.882 | 22.728 | 19.219 | 16.439 | 14.196 | 12.394 | 10.734 | 9.101 | |
SSIM | SR-HTR | 0.9712 | 0.9350 | 0.8920 | 0.8568 | 0.8233 | 0.7875 | 0.7597 | 0.7091 |
Molina [36] | 0.9591 | 0.9103 | 0.8397 | 0.7537 | 0.6397 | 0.5177 | 0.4012 | 0.3187 | |
Fan [23] | 0.9745 | 0.9284 | 0.8858 | 0.8225 | 0.6740 | 0.5515 | 0.3286 | 0.1694 | |
Singh [2] | 0.8282 | 0.7287 | 0.6271 | 0.5254 | 0.4190 | 0.3148 | 0.2106 | 0.1044 | |
Tai [24] | 0.8333 | 0.7341 | 0.6333 | 0.5277 | 0.4156 | 0.3092 | 0.2036 | 0.0997 | |
Tong [10] | 0.9168 | 0.8154 | 0.6964 | 0.5772 | 0.4536 | 0.3366 | 0.2223 | 0.1104 | |
PSNR-HVS-M | SR-HTR | 30.789 | 28.894 | 27.145 | 26.108 | 25.474 | 24.491 | 23.139 | 20.164 |
Molina [36] | 32.717 | 28.032 | 24.435 | 21.457 | 18.723 | 16.423 | 14.236 | 12.131 | |
Fan [23] | 28.126 | 21.793 | 19.231 | 16.051 | 12.381 | 10.613 | 8.481 | 7.185 | |
Singh [2] | 18.323 | 14.821 | 12.481 | 10.512 | 8.963 | 7.825 | 6.742 | 5.535 | |
Tai [24] | 18.879 | 15.605 | 13.305 | 11.32 | 9.969 | 9.033 | 8.042 | 6.826 | |
Tong [10] | 25.895 | 20.794 | 17.082 | 14.177 | 11.798 | 9.895 | 8.157 | 6.375 |
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|
SR-HTR | 35.80 | 32.72 | 30.63 | 29.25 | 28.14 | 27.06 | 26.01 | 24.82 | 23.08 |
Molina [36] | 37.28 | 33.97 | 31.20 | 28.71 | 26.38 | 23.99 | 21.77 | 19.79 | 18.01 |
Fan [23] | 31.62 | 29.32 | 23.75 | 20.96 | 18.41 | 14.92 | 12.98 | 10.99 | 9.63 |
Singh [2] | 26.74 | 21.76 | 18.61 | 16.30 | 14.54 | 13.04 | 11.79 | 10.70 | 9.71 |
Tai [24] | 26.34 | 21.05 | 17.94 | 15.71 | 14.02 | 12.57 | 11.36 | 10.33 | 9.40 |
Tong [10] | 35.22 | 28.68 | 23.98 | 20.59 | 17.92 | 15.61 | 13.67 | 11.98 | 10.46 |
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|
SR-HTR | 0.967 | 0.935 | 0.901 | 0.868 | 0.833 | 0.793 | 0.750 | 0.696 | 0.616 |
Molina [36] | 0.972 | 0.943 | 0.906 | 0.852 | 0.780 | 0.679 | 0.561 | 0.440 | 0.336 |
Fan [23] | 0.977 | 0.959 | 0.919 | 0.875 | 0.817 | 0.676 | 0.540 | 0.347 | 0.167 |
Singh [2] | 0.934 | 0.841 | 0.743 | 0.639 | 0.537 | 0.431 | 0.326 | 0.220 | 0.111 |
Tai [24] | 0.942 | 0.854 | 0.753 | 0.648 | 0.542 | 0.429 | 0.319 | 0.210 | 0.103 |
Tong [10] | 0.974 | 0.921 | 0.834 | 0.722 | 0.603 | 0.478 | 0.359 | 0.240 | 0.122 |
10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | |
---|---|---|---|---|---|---|---|---|---|
SR-HTR | 33.29 | 30.20 | 28.15 | 26.70 | 25.57 | 24.38 | 23.03 | 21.32 | 18.88 |
Molina [36] | 36.12 | 32.47 | 29.10 | 25.89 | 23.07 | 20.26 | 17.75 | 15.54 | 13.58 |
Fan [23] | 31.37 | 29.33 | 23.21 | 20.33 | 17.73 | 14.09 | 12.13 | 10.15 | 8.78 |
Singh [2] | 23.79 | 18.85 | 15.71 | 13.36 | 11.55 | 9.98 | 8.67 | 7.54 | 6.52 |
Tai [24] | 25.29 | 19.98 | 16.77 | 14.41 | 12.67 | 11.27 | 10.16 | 9.25 | 8.43 |
Tong [10] | 34.70 | 26.87 | 21.80 | 18.13 | 15.25 | 12.79 | 10.73 | 8.94 | 7.33 |
SR-HTR | Molina [36] | Fan [23] | Singh [2] | Tai [24] | Tong [10] | ||
---|---|---|---|---|---|---|---|
PSNR | Kodak-4 | 25.90 | 19.42 | 10.01 | 10.25 | 9.97 | 11.22 |
Kodak-10 | 30.21 | 32.05 | 24.50 | 20.27 | 18.97 | 26.17 | |
Kodak-17 | 26.76 | 20.95 | 11.33 | 11.46 | 11.20 | 13.07 | |
Kodak-18 | 27.91 | 28.97 | 19.17 | 17.49 | 17.20 | 22.85 | |
SSIM | Kodak-4 | 0.6883 | 0.3433 | 0.1961 | 0.1429 | 0.1341 | 0.1548 |
Kodak-10 | 0.9130 | 0.9197 | 0.9150 | 0.7680 | 0.7818 | 0.8658 | |
Kodak-17 | 0.7661 | 0.4994 | 0.3858 | 0.2650 | 0.2602 | 0.2933 | |
Kodak-18 | 0.8848 | 0.8868 | 0.8553 | 0.7187 | 0.7262 | 0.8174 | |
PSNR-HVS-M | Kodak-4 | 21.69 | 14.78 | 11.21 | 8.21 | 11.27 | 9.23 |
Kodak-10 | 26.52 | 30.26 | 24.06 | 16.67 | 15.76 | 23.65 | |
Kodak-17 | 23.91 | 16.77 | 10.42 | 8.37 | 10.27 | 10.13 | |
Kodak-18 | 25.66 | 27.51 | 17.68 | 14.44 | 14.27 | 20.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Reyes, R.; Cruz-Ramos, C.; Ponomaryov, V.; Garcia-Salgado, B.P.; Molina-Garcia, J. Color Image Self-Recovery and Tampering Detection Scheme Based on Fragile Watermarking with High Recovery Capability. Appl. Sci. 2021, 11, 3187. https://doi.org/10.3390/app11073187
Reyes-Reyes R, Cruz-Ramos C, Ponomaryov V, Garcia-Salgado BP, Molina-Garcia J. Color Image Self-Recovery and Tampering Detection Scheme Based on Fragile Watermarking with High Recovery Capability. Applied Sciences. 2021; 11(7):3187. https://doi.org/10.3390/app11073187
Chicago/Turabian StyleReyes-Reyes, Rogelio, Clara Cruz-Ramos, Volodymyr Ponomaryov, Beatriz P. Garcia-Salgado, and Javier Molina-Garcia. 2021. "Color Image Self-Recovery and Tampering Detection Scheme Based on Fragile Watermarking with High Recovery Capability" Applied Sciences 11, no. 7: 3187. https://doi.org/10.3390/app11073187
APA StyleReyes-Reyes, R., Cruz-Ramos, C., Ponomaryov, V., Garcia-Salgado, B. P., & Molina-Garcia, J. (2021). Color Image Self-Recovery and Tampering Detection Scheme Based on Fragile Watermarking with High Recovery Capability. Applied Sciences, 11(7), 3187. https://doi.org/10.3390/app11073187