Face Morphing, a Modern Threat to Border Security: Recent Advances and Open Challenges
Abstract
:1. Introduction
2. The Morphing Attack Scenario
3. The Posed Threat
4. Morphing Face Images
4.1. Landmark Detection
4.2. Face Alignment
- Generate triangular facial mesh: Obtain Delaunay triangulation of the detected landmark locations.
- Create interpolated facial mesh by blending original landmark locations, i.e.,
- Warp both original faces to the interpolated mesh: Apply affine transform to map the pixel locations of each the original triangles, to the locations of the corresponding interpolated triangle.
4.3. Blending
4.4. Post-Processing
4.5. Morphing Software
5. Morphing Attack Detection
5.1. On-Line vs. Off-Line Detection Scenario
5.2. Deep vs. Non-Deep Classification
5.3. MAD-Related Literature
6. Evaluation Metrics
- Attack presentation classification error rate (APCER) is defined as the proportion of presentation attacks that have been classified incorrectly (as bonafide) [78]:
- Bonafide presentation classification error rate (BPCER) is defined as the proportion of bonafide presentation incorrectly classified as presentation attacks [78]:
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICAO. Biometric Deployment of Machine Readable Travel Documents. In Proceedings of the TAG MRTD/NTWG, Montreal, QC, Canada, 17–21 May 2004. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Ferrara, M.; Franco, A.; Maltoni, D.; Sun, Y. On the impact of alterations on face photo recognition accuracy. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Naples, Italy, 9–13 September 2013; pp. 7743–7751. [Google Scholar]
- Mohammadi, A.; Bhattacharjee, S.; Marcel, S. Deeply vulnerable: A study of the robustness of face recognition to presentation attacks. IET Biom. 2018, 7, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Wandzik, L.; Garcia, R.V.; Kaeding, G.; Chen, X. CNNs Under Attack: On the Vulnerability of Deep Neural Networks Based Face Recognition to Image Morphing. In Proceedings of the International Workshop on Digital Watermarking, Magdeburg, Germany, 23–25 August 2017; pp. 121–135. [Google Scholar]
- Scherhag, U.; Rathgeb, C.; Merkle, J.; Breithaupt, R.; Christoph, B. Face Recognition Systems Under Morphing Attacks: A Survey. IEEE Access 2019, 7, 23012–23026. [Google Scholar] [CrossRef]
- Ferrara, M.; Franco, A.; Maltoni, D. The Magic Passport. In Proceedings of the International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–7. [Google Scholar]
- Busvine, D. Germany Bans Digital Doppelganger Passport Photos; Reuters: Toronto, ON, Canada, 2020. [Google Scholar]
- Scherhag, U.; Debiasi, L.; Rathgeb, C.; Busch, C.; Uhl, A. Detection of Face Morphing Attacks Based on PRNU Analysis. IEEE Trans. Biometr. Behav. Ident. Sci. 2019, 1, 302–317. [Google Scholar] [CrossRef]
- Ferrara, M.; Franco, A.; Maltoni, D.; Sun, Y. On the Effects of Image Alterations on Face Recognition Accuracy. In Face Recognition Across the Electromagnetic Spectrum; Bourlai, T., Ed.; Springer: Cham, Switzerland, 2016; pp. 195–222. [Google Scholar]
- Kramer, R.S.S.; Mireku, M.O.; Flack, T.R.; Ritchie, K.L. Face morphing attacks: Investigating detection with humans and computers. Cogn. Res. 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.M.; White, D.; McNeill, A. The Glasgow face matching test. Behav. Res. Methods 2010, 42, 286–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, R.; White, D.; Van Montfort, X.; Burton, A.M. Variability in photos of the same face. Cognition 2011, 121, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Young, A.W.; Burton, A.M. Are we face experts? Trends Cogn. Sci. 2018, 22, 100–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, D.; Kemp, R.I.; Jenkins, R.; Matheson, M.; Burton, A.M. Passport officers’ errors in face matching. PLoS ONE 2014, 9, e103510. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.J.; Kramer, R.S.S.; Burton, A.M. Fraudulent ID using face morphs: Experiments on human and automatic recognition. PLoS ONE 2017, 12, e0173319. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.J.; Mungall, A.; Watson, D.G.; Wade, K.A.; Nightingale, S.J.; Butler, S. Detecting morphed passport photos: A training and individual differences approach. Cogn. Res. Princ. Implic. 2018, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- AMSL Face Morph Image Data Set. Available online: https://omen.cs.uni-magdeburg.de/disclaimer/index.php (accessed on 31 March 2021).
- Face Research Lab London Set. Available online: https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666 (accessed on 31 March 2021).
- Utrecht ECVP Dataset. Available online: http://pics.stir.ac.uk/ (accessed on 31 March 2021).
- Neubert, T.; Makrushin, A.; Hildebrandt, M.; Kraetzer, C.; Dittmann, J. Extended StirTrace Benchmarking of Biometric and Forensic Qualities of Morphed Face Images. IET Biom. 2018, 7, 325–332. [Google Scholar] [CrossRef]
- Seibold, C.; Samek, W.; Hilsmann, A.; Eisert, P. Detection of Face Morphing Attacks by Deep Learning. In Digital Forensics and Watermarking, Proceedings of the IWDW 2017, Magdeburg, Germany, 23–25 August 2017; Kraetzer, C., Shi, Y.Q., Dittmann, J., Kim, H., Eds.; Springer: Cham, Switzerland, 2017; Volume 10431. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 886–893. [Google Scholar]
- Çeliktutan, O.; Ulukaya, S.; Sankur, B. A comparative study of face landmarking techniques. J. Image Video Proc. 2013, 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Cootes, T.F.; Taylor, C.J.; Cooper, D.H.; Graham, J. Active shape models-their training and application. Comput. Vis. Image Understand. 1995, 61, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 681–685. [Google Scholar] [CrossRef] [Green Version]
- Seshadri, K.; Savvides, M. An analysis of the sensitivity of active shape models to initialization when applied to automatic facial landmarking. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1255–1269. [Google Scholar] [CrossRef]
- Wiskott, L.; Fellous, J.; Kruger, N.; von der Malsburg, C. Face recognition by elastic bunch graph. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 7, 775–779. [Google Scholar] [CrossRef]
- Pentland, A.; Moghaddam, B.; Starner, T. View-based and Modular Eigenspaces for Face Recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 21–23 June 1994; pp. 84–91. [Google Scholar]
- Çelik, T.; Özkaramanli, H.; Demirel, H. Facial feature extraction using complex dual-tree wavelet transforms. Comput. Vis. Image Understand. 2008, 111, 229–246. [Google Scholar] [CrossRef]
- Smeraldi, F.; Bigun, J. Retinal vision applied to facial features detection and face authentication. Pattern Recogn. Lett. 2002, 23, 463–475. [Google Scholar] [CrossRef]
- Akakin, H.Ç.; Sankur, B. Robust 2D/3D face landmarkingon. In Proceedings of the 2007 3DTV Conference, Kos, Greece, 7–9 May 2007; pp. 1–4. [Google Scholar]
- Antonini, G.; Popovici, V.; Thiran, J.-T. Independent component analysis and support vector machine for face feature extraction. In Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication, Guildford, UK, 9–11 June 2003; pp. 111–118. [Google Scholar]
- King, D.E. Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 2009, 4, 1755–1758. [Google Scholar]
- Kazemi, V.; Sullivan, J. One Millisecond Face Alignment with an Ensemble of Regression Trees. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 1867–1874. [Google Scholar]
- Wandzik, L.; Kaeding, G.; Garcia, R.V. Morphing Detection Using a General-Purpose Face Recognition System. In Proceedings of the European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1017–1021. [Google Scholar]
- Saragih, J.M.; Lucey, S.; Cohn, J.F. Face alignment through sub-space constrained mean-shifts. In Proceedings of the ICCV, Kyoto, Japan, 29 September–2 October 2009; pp. 1034–1041. [Google Scholar]
- Ruprecht, D.; Muller, H. Image warping with scattered data interpolation. IEEE Comput. Graph. Appl. 1995, 15, 37–43. [Google Scholar] [CrossRef]
- Sederberg, T.; Parry, S. Free-form deformation of solid geometric models. In Proceedings of the Special Interest Group on Comp. Graphics and Interactive Techniques (SIGGRAPH), Dallas, TX, USA, 18–22 August 1986; pp. 151–160. [Google Scholar]
- Lee, S.; Chwa, K.; Shin, S. Image metamorphosis using snakes and free-form deformations. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH), Los Angeles, CA, USA, 6–11 August 1995; pp. 439–448. [Google Scholar]
- Beier, T.; Neely, S. Feature-based image metamorphosis. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH), Chicago, IL, USA, 26–31 July 1992; pp. 35–42. [Google Scholar]
- Schaefer, S.; McPhail, T.; Warren, J. Image deformation using moving least squares. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques (SIGGRAPH), Boston, MA, USA, 30 July–3 August 2006; pp. 533–540. [Google Scholar]
- Seibold, C.; Samek, W.; Hilsmann, A.; Eisert, P. Accurate and robust neural networks for face morphing attack detection. J. Inf. Secur. Appl. 2020, 53, 102526. [Google Scholar] [CrossRef]
- Makrushin, A.; Neubert, T.; Dittmann, J. Automatic Generation and Detection of Visually Faultless Facial Morphs. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), Porto, Portugal, 27 February–1 March 2017; pp. 39–50. [Google Scholar]
- Wu, J. Face Recognition Jammer using Image Morphing; Boston University: Boston, MA, USA, 2011. [Google Scholar]
- Wu, E.; Liu, F. Robust image metamorphosis immune from ghost and blur. Vis. Comput 2012, 29, 311–321. [Google Scholar] [CrossRef]
- Seitz, S.M.; Dyer, C.R. View morphing. In Proceedings of the Special Interest Group on Comp. Graphics and Interactive Techniques (SIGGRAPH), New Orleans, LA, USA, 4–9 August 1996; pp. 21–30. [Google Scholar]
- FaceFusion. Available online: http://www.wearemoment.com/FaceFusion/ (accessed on 31 March 2021).
- Scherhag, U.; Rathgeb, C.; Merkle, J.; Busch, C. Deep face representations for differential morphing attack detection. arXiv 2020, arXiv:2001.01202. [Google Scholar] [CrossRef]
- Weng, Y.; Wang, L.; Li, X.; Chai, M.; Zhou, K. Hair interpolation for portrait morphing. Comput. Graph. Forum 2013, 32, 79–84. [Google Scholar] [CrossRef]
- Raja, K.; Ferrara, M.; Franco, A.; Spreeuwers, L.; Batskos, I.; Gomez-Barrero, F.D.M.; Scherhag, U.; Fischer, D.; Venkatesh, S.; Singh, J.M.; et al. Morphing Attack Detection—Database, Evaluation Platform and Benchmarking. arXiv 2020, arXiv:2006.06458. [Google Scholar] [CrossRef]
- Face Morpher. Available online: https://github.com/alyssaq/face_morpher (accessed on 31 March 2021).
- Hatcher, G.; Yu, W. A survey of deep learning: Platforms, applications and emerging research trends. IEEE Access 2018, 6, 24411–24432. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Sze, V.; Chen, Y.-H.; Yang, T.-J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Samek, W.; Wiegand, T.; Müller, K.R. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. arXiv 2020, arXiv:1708.08296. [Google Scholar]
- Ferrara, M.; Franco, A.; Maltoni, D. Face demorphing. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1008–1017. [Google Scholar] [CrossRef]
- Zhang, L.B.; Peng, F.; Long, M. Face morphing detection using Fourier spectrum of sensor pattern noise. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Autherith, S.; Pasquini, C. Detecting Morphing Attacks through Face Geometry Features. J. Imaging 2020, 6, 115. [Google Scholar] [CrossRef]
- Neubert, T.; Kraetzer, C.; Dittmann, J. A face morphing detection concept with a frequency and a spatial domain feature space for images on eMRTD. In Proceedings of the ACM Workshop on Information Hiding and Multimedia Security, Paris, France, 3–5 July 2019; pp. 95–100. [Google Scholar]
- Spreeuwers, L.; Schils, M.; Veldhuis, R. Towards robust evaluation of face morphing detection. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1027–1031. [Google Scholar]
- Raghavendra, R.; Raja, K.B.; Venkatesh, S.; Busch, C. Transferable deep-cnn features for detecting digital and print-scanned morphed face images. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 10–18. [Google Scholar]
- Cai, S.; Zhang, L.; Zuo, W.; Feng, X. A Probabilistic Collaborative Representation Based Approach for Pattern Classification. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2950–2959. [Google Scholar]
- Ramachandra, R.; Raja, K.B.; Busch, C. Detecting morphed face images. In Proceedings of the International Conference on Biometrics: Theory Applications and Systems (BTAS), Niagara Falls, NY, USA, 6–9 September 2016; pp. 1–7. [Google Scholar]
- Agarwal, A.; Singh, R.; Vatsa, M.; Noore, A. SWAPPED! Digital face presentation attack detection via weighted local magnitude pattern. In Proceedings of the International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 659–665. [Google Scholar]
- Kraetzer, C.; Makrushin, A.; Neubert, T.; Hildebrandt, M.; Dittmann, J. Modeling attacks on photo-ID documents and applying media forensics for the detection of facial morphing. In Proceedings of the Workshop on Information Hiding and Multimedia Security (IHMMSec), Philadelphia, PA, USA, 20–22 June 2017; pp. 21–32. [Google Scholar]
- Peng, F.; Zhang, L.B.; Long, M. Fd-gan: Face de-morphing generative adversarial network for restoring accomplice’s facial image. IEEE Access 2019, 7, 75122–75131. [Google Scholar] [CrossRef]
- Ortega-Delcampo, D.; Conde, C.; Palacios-Alonso, D.; Cabello, E. Border Control Morphing Attack Detection With a Convolutional Neural Network De-Morphing Approach. IEEE Access 2020, 8, 92301–92313. [Google Scholar]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the British Machine Vision Conference (BMVC), Swansea, UK, 7–10 September 2015; Volume 1, p. 6. [Google Scholar]
- Venkatesh, S.; Ramachandra, R.; Raja, K.; Spreeuwers, L.; Veldhuis, R.; Busch, C. Morphed face detection based on deep color residual noise. In Proceedings of the International Conference on Image Proceedings of the Theory, Tools and Applications (IPTA), Istanbul, Turkey, 6–9 November 2019; pp. 1–6. [Google Scholar]
- Venkatesh, S.; Ramachandra, R.; Raja, K.; Spreeuwers, L.; Veldhuis, R.; Busch, C. Detecting morphed face attacks using residual noise from deep multi-scale context aggregation network. In Proceedings of the Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 1–5 March 2020; pp. 280–289. [Google Scholar]
- Venkatesh, S.; Zhang, H.; Ramachandra, R.; Raja, K.; Damer, N.; Busch, C. Can GAN Generated Morphs Threaten Face Recognition Systems Equally as Landmark Based Morphs? Vulnerability and Detection. In Proceedings of the Int. Workshop on Biometrics and Forensics (IWBF), Porto, Portugal, 29–30 April 2020; pp. 1–6. [Google Scholar]
- Information Technology Biometric Presentation Attack Detection—Part 3: Testing and Reporting, Standard 30107-3:2017; International Organization for Standardization: Geneva, Switzerland, 2017.
- NIST. Frvt Morph Web Site. 2020. Available online: https://pages.nist.gov/frvt/html/frvt_morph.html (accessed on 31 March 2021).
On-Line | Off-Line | ||
---|---|---|---|
Deep | Non-Deep | Deep | Non-Deep |
Peng et al. (2019) [72] | Ferrara et al. (2017) [62] | Seibold et al. (2017) [22] | Neubert et al. (2019) [65] |
Ortega et al (2020) [73] | Autherith et al. (2020) [64] | Seibold et al. (2020) [44] | Spreeuwers et al. (2018) [66] |
Scherhag et al. (2020) [50] | Raghavendra (2017) [67] | Wandzik et al. (2018) [37] | |
Venkatesh et al (2019) [75] | Ramachandra (2016) [69] | ||
Venkatesh et al (2020) [76] | Agarwal et al. (2017) [70] | ||
Kraetzer et al. (2017) [71] | |||
Scherhag et al. (2019) [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikoulis, E.-V.; Ioannou, Z.-M.; Paschou, M.; Sakkopoulos, E. Face Morphing, a Modern Threat to Border Security: Recent Advances and Open Challenges. Appl. Sci. 2021, 11, 3207. https://doi.org/10.3390/app11073207
Pikoulis E-V, Ioannou Z-M, Paschou M, Sakkopoulos E. Face Morphing, a Modern Threat to Border Security: Recent Advances and Open Challenges. Applied Sciences. 2021; 11(7):3207. https://doi.org/10.3390/app11073207
Chicago/Turabian StylePikoulis, Erion-Vasilis, Zafeiria-Marina Ioannou, Mersini Paschou, and Evangelos Sakkopoulos. 2021. "Face Morphing, a Modern Threat to Border Security: Recent Advances and Open Challenges" Applied Sciences 11, no. 7: 3207. https://doi.org/10.3390/app11073207
APA StylePikoulis, E. -V., Ioannou, Z. -M., Paschou, M., & Sakkopoulos, E. (2021). Face Morphing, a Modern Threat to Border Security: Recent Advances and Open Challenges. Applied Sciences, 11(7), 3207. https://doi.org/10.3390/app11073207