Parametric Analysis of a Polygeneration System with CO2 Working Fluid
Abstract
:1. Introduction
2. Material and Methods
2.1. The Examined System
2.2. Mathematical Formulation
2.3. Methodology
3. Results and Discussion
3.1. Preliminary Analysis
3.2. Parametric Analysis
3.3. Discussion
4. Conclusions
- −
- In the nominal operating conditions, the system energy efficiency was 78.07% and the exergy efficiency 26.29%.
- −
- In the nominal operating conditions, the net power production was 24.50 kW, the cooling production was 30.73 kW, the heating production at 45 °C was 9.24 kW and the heating production at 80 °C was 13.60 kW.
- −
- The parameters that most affect the system energy efficiency are the medium pressure and the high heating temperature.
- −
- The parameters that most affect the system exergy efficiency are the high pressure and the refrigeration temperature.
- −
- The examined system can operate in a great range of heating and refrigeration temperatures, and so, it can be applied in numerous applications in the industrial and the building sector.
- −
- The variation of the pressure levels and of the (TIT) can lead to significant deviations in the system energy and exergy efficiencies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
h | Specific enthalpy, kJ kg−1 |
Hu | Lower heating value, kJ kg−1 |
m | CO2 mass flow rate, kg s−1 |
mb | Fuel consumption rate, kg s−1 |
P | Power rate, kW |
PP | Pinch point, °C |
Q | Heat rate, kW |
s | Specific entropy, kJ kg−1 K−1 |
T | Temperature, °C |
TIT | Turbine inlet temperature, °C |
T0 | Reference temperature, K |
Greek Symbols | |
ηen | Energy efficiency |
ηex | Exergy efficiency |
ηhex | Heat exchanger effectiveness |
ψb | Fuel exergy factor |
Subscripts and Superscripts | |
b | Boiler |
com | Compressor |
is | Isentropic |
heat | Heating |
high | High |
gc | Gas Cooler |
low | Low |
nom | Nominal |
hr | Heat rejection |
med | Medium |
ref | Refrigeration |
tur | Turbine |
Abbreviations | |
EES | Engineering Equation Solver |
ORC | Organic Rankine cycle |
Par | Parameter of the sensitivity analysis |
References
- Gullo, P. Impact and quantification of various individual thermodynamic improvements for transcritical R744 supermarket refrigeration systems based on advanced exergy analysis. Energy Convers. Manag. 2021, 229, 113684. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Alternative designs of parabolic trough solar collectors. Prog. Energy Combust. Sci. 2019, 71, 81–117. [Google Scholar] [CrossRef]
- Dincer, H.; Yüksel, S. Multidimensional evaluation of global investments on the renewable energy with the integrated fuzzy decision-making model under the hesitancy. Int. J. Energy Res. 2019, 43, 1775–1784. [Google Scholar] [CrossRef]
- Kasaeian, A.; Nouri, G.; Ranjbaran, P.; Wen, D. Solar collectors and photovoltaics as combined heat and power systems: A critical review. Energy Convers. Manag. 2018, 156, 688–705. [Google Scholar] [CrossRef] [Green Version]
- Kasaeian, A.; Bellos, E.; Shamaeizadeh, A.; Tzivanidis, C. Solar-driven polygeneration systems: Recent progress and outlook. Appl. Energy 2020, 264, 114764. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. CO2 Transcritical Refrigeration Cycle with Dedicated Subcooling: Mechanical Compression vs. Absorption Chiller. Appl. Sci. 2019, 9, 1605. [Google Scholar] [CrossRef] [Green Version]
- Abas, N.; Kalair, A.R.; Khan, N.; Haider, A.; Saleem, Z.; Saleem, M.S. Natural and synthetic refrigerants, global warming: A review. Renew. Sustain. Energy Rev. 2018, 90, 557–569. [Google Scholar] [CrossRef]
- Scaccabarozzi, R.; Tavano, M.; Invernizzi, C.M.; Martelli, E. Comparison of working fluids and cycle optimization for heat recovery ORCs from large internal combustion engines. Energy 2018, 158, 396–416. [Google Scholar] [CrossRef]
- Dincer, I.; Zamfirescu, C. Renewable energy based multigeneration systems. Int. J. Energy Res. 2012, 36, 1403–1415. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Dincer, I.; Hamdullahpur, F. Exergy modeling of a new solar driven trigeneration system. Sol. Energy 2011, 85, 2228–2243. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Parametric analysis and optimization of a solar driven trigeneration system based on ORC and absorption heat pump. J. Clean. Prod. 2017, 161, 493–509. [Google Scholar] [CrossRef]
- Eisavi, B.; Khalilarya, S.; Chitsaz, A.; Rosen, M.A. Thermodynamic analysis of a novel combined cooling, heating and power system driven by solar energy. Appl. Therm. Eng. 2018, 129, 1219–1229. [Google Scholar] [CrossRef]
- Mathkor, R.Z.; Agnew, B.; Al-Weshahi, M.A.; Latrsh, F. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle. Energies 2015, 8, 8835–8856. [Google Scholar] [CrossRef]
- Voeltzel, N.; Phan, H.T.; Blondel, Q.; Gonzalez, B.; Tauveron, N. Steady and dynamical analysis of a combined cooling and power cycle. Therm. Sci. Eng. Prog. 2020, 19, 100650. [Google Scholar] [CrossRef]
- Khalid, F.; Dincer, I.; Rosen, M.A. Techno-economic assessment of a renewable energy based integrated multigeneration system for green buildings. Appl. Therm. Eng. 2016, 99, 1286–1294. [Google Scholar] [CrossRef]
- Bellos, E.; Vellios, L.; Theodosiou, I.-C.; Tzivanidis, C. Investigation of a solar-biomass polygeneration system. Energy Convers. Manag. 2018, 173, 283–295. [Google Scholar] [CrossRef]
- Harrod, J.; Mago, P.J.; Luck, R. Sizing analysis of a combined cooling, heating, and power system for a small office building using a wood waste biomass-fired Stirling engine. Int. J. Energy Res. 2012, 36, 64–74. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, P.; Niu, X.; Dai, Y. Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy. Appl. Energy 2012, 94, 58–64. [Google Scholar] [CrossRef]
- Xu, X.X.; Liu, C.; Fu, X.; Gao, H.; Li, Y. Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2. Energy 2015, 86, 414–422. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, F.; Yu, L.; Cao, S.; Zhou, Y.; Wu, Y.; Hou, L. Optimization of a combined cooling, heating and power system using CO2 as main working fluid driven by gas turbine waste heat. Energy Convers. Manag. 2018, 178, 235–249. [Google Scholar] [CrossRef]
- Mishra, R.S.; Singh, H. Detailed parametric analysis of solar driven supercritical CO2 based combined cycle for power generation, cooling and heating effect by vapor absorption refrigeration as a bottoming cycle. Therm. Sci. Eng. Prog. 2018, 8, 397–410. [Google Scholar] [CrossRef]
- Balafkandeh, S.; Zare, V.; Gholamian, E. Multi-objective optimization of a tri-generation system based on biomass gasification/digestion combined with S-CO2 cycle and absorption chiller. Energy Convers. Manag. 2019, 200, 112057. [Google Scholar] [CrossRef]
- Fan, G.; Li, H.; Du, Y.; Zheng, S.; Chen, K.; Dai, Y. Preliminary conceptual design and thermo-economic analysis of a combined cooling, heating and power system based on supercritical carbon dioxide cycle. Energy 2020, 203, 117842. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.; Jiang, P.; Zhu, Y. Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle. Appl. Energy 2020, 271, 115189. [Google Scholar] [CrossRef]
- Zare, V.; Takleh, H.R. Novel geothermal driven CCHP systems integrating ejector transcritical CO2 and Rankine cycles: Thermodynamic modeling and parametric study. Energy Convers. Manag. 2020, 205, 112396. [Google Scholar] [CrossRef]
- Ayachi, F.; Tauveron, N.; Tartière, T.; Colasson, S.; Nguyen, D. Thermo-Electric Energy Storage involving CO2 transcritical cycles and ground heat storage. Appl. Therm. Eng. 2016, 108, 1418–1428. [Google Scholar] [CrossRef]
- F-Chart Software, Engineering Equation Solver (EES). 2015. Available online: http://www.fchart.com/ees (accessed on 5 January 2021).
- Vasquez Padilla, R.; Soo Too, Y.C.; Benito, R.; Stein, W. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 2015, 148, 348–365. [Google Scholar] [CrossRef]
- Dai, B.; Liu, S.; Zhu, K.; Sun, Z.; Ma, Y. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander. Energy 2017, 122, 787–800. [Google Scholar] [CrossRef]
- Ptasinski, K.J.; Prins, M.J.; Pierik, A. Exergetic evaluation of biomass gasification. Energy 2007, 32, 568–574. [Google Scholar] [CrossRef]
- Chen, R.; Romero, M.; González-Aguilar, J.; Rovense, F.; Rao, Z.; Liao, S. Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for particle-based high temperature concentrating solar power plants. Energy Convers. Manag. 2021, 232, 113870. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Heat input | Qb | 100 kW |
Boiler efficiency | ηb | 95% |
Lower heating value | Hu | 15290 kJ kg−1 |
Pitch point in heat exchangers | PP | 5 °C |
Exergy factor of the fuel | ψb | 1.119 |
Low heating temperature | Theat,low | 45 °C |
Nominal high heating temperature | Theat,high | 80 °C |
Nominal high pressure | Phigh | 200 bar |
Nominal medium pressure | Pmed | 85 bar |
Nominal refrigeration temperature | Tref | 5 °C |
Nominal turbine inlet temperature | TIT | 700 °C |
Nominal heat exchanger effectiveness | ηhex | 90% |
Nominal heat rejection temperature | Thr | 35 °C |
State-Points | Pressure-P | Temperature-T | Specific Enthalpy-h | Specific Entropy-s |
---|---|---|---|---|
(bar) | (°C) | (kJ kg−1) | (kJ kg−1 K−1) | |
1 | 39.7 | 5.0 | −79.3 | −0.923 |
2 | 85.0 | 65.4 | −45.2 | −0.907 |
3 | 85.0 | 50.0 | −80.9 | −1.015 |
4 | 85.0 | 35.0 | −197.9 | −1.388 |
5 | 200.0 | 61.8 | −177.7 | −1.379 |
6 | 200.0 | 508.8 | 477.3 | −0.062 |
7 | 200.0 | 800.0 | 844.2 | 0.337 |
8 | 85.0 | 679.0 | 695.3 | 0.356 |
9 | 85.0 | 123.5 | 40.2 | −0.673 |
10 | 85.0 | 85.0 | −12.3 | −0.812 |
11 | 85.0 | 35.0 | −197.9 | −1.388 |
12 | 39.7 | 5.0 | −197.9 | −1.349 |
Parameter | Symbol | Value |
---|---|---|
Heat input | Qb | 100 kW |
Net power production | Pnet | 24.50 kW |
Refrigeration production | Qref | 30.73 kW |
Low-heating production | Qheat,low | 9.24 kW |
High heating production | Qheat,high | 13.60 kW |
System energy efficiency | ηen | 78.07% |
System exergy efficiency | ηex | 26.29% |
Fuel consumption | mb | 0.00654 kg s−1 |
Turbine power production | Ptur | 38.55 kW |
Low compressor consumption | Pcom,low | 8.82 kW |
High compressor consumption | Pcom,high | 5.23 kW |
First gas cooler heat rejection | Qgc,1 | 30.31 kW |
Second gas cooler heat rejection | Qgc,2 | 48.07 kW |
Parameters | Energy Efficiency | Exergy Efficiency | ||||
---|---|---|---|---|---|---|
Symbol | Min | Max | Min | Max | Min | Max |
TIT (°C) | 400 | 1000 | 70.76% | 80.15% | 15.01% | 29.60% |
Phigh (bar) | 110 | 230 | 72.10% | 78.88% | 8.69% | 28.38% |
Pmed (bar) | 75 | 125 | 67.51% | 117.10% | 14.36% | 30.19% |
ηhex (−) | 0.00 | 0.96 | 75.39% | 88.92% | 17.92% | 28.36% |
Tref (°C) | −35 | 10 | 75.69% | 83.03% | 12.67% | 27.16% |
Thr (°C) | 20 | 45 | 74.42% | 79.48% | 24.86% | 27.57% |
Theat,high (°C) | 45 | 115 | 65.63% | 95.83% | 24.63% | 26.50% |
Parameter (Par) | Comments (ηen) | Comments (ηex) | ||
---|---|---|---|---|
TIT | 14.03% | 64.75% | Positive trend | Positive trend |
Phigh | 14.47% | 124.83% | Positive trend | Positive trend |
Pmed | 107.98% | 102.36% | Positive trend | Negative trend |
ηhex | 16.25% | 37.23% | Negative trend | Positive trend |
Tref | 1.04% | 6.12% | Maximum point | Positive trend |
Thr | 9.07% | 14.43% | Negative trend | Positive trend |
Theat,high | 44.21% | 8.13% | Negative trend | Maximum point |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellos, E.; Tzivanidis, C. Parametric Analysis of a Polygeneration System with CO2 Working Fluid. Appl. Sci. 2021, 11, 3215. https://doi.org/10.3390/app11073215
Bellos E, Tzivanidis C. Parametric Analysis of a Polygeneration System with CO2 Working Fluid. Applied Sciences. 2021; 11(7):3215. https://doi.org/10.3390/app11073215
Chicago/Turabian StyleBellos, Evangelos, and Christos Tzivanidis. 2021. "Parametric Analysis of a Polygeneration System with CO2 Working Fluid" Applied Sciences 11, no. 7: 3215. https://doi.org/10.3390/app11073215
APA StyleBellos, E., & Tzivanidis, C. (2021). Parametric Analysis of a Polygeneration System with CO2 Working Fluid. Applied Sciences, 11(7), 3215. https://doi.org/10.3390/app11073215