Involvement of KL-6 Biomarker in Interstitial Lung Disease Induced by SARS-CoV-2 Infection: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Studies Selection
2.3. Data Extraction
2.4. Outcomes
2.5. Quality Assessment
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yanagihara, T.; Sato, S.; Upagupta, C.; Kolb, M. What have we learned from basic science studies on idiopathic pulmonary fibrosis? Eur. Respir. Rev. 2019, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamid, H.; Abid, Z.; Amir, A.; Rehman, T.U.; Akram, W.; Mehboob, T. Current burden on healthcare systems in low- and middle-income countries: Recommendations for emergency care of COVID-19. Drugs Ther. Perspect. Ration. Drug Sel. Use 2020, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Hodcroft, E.B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA 2021, 325, 529–531. [Google Scholar] [CrossRef]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7. Nature 2021. [Google Scholar] [CrossRef]
- Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H.; Mercer, S.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K.; et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 2020, 8. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Spinetti, T.; Urman, R.D.; Luedi, M.M.; Schefold, J.C. COVID-19-associated acute respiratory distress syndrome (CARDS): Current knowledge on pathophysiology and ICU treatment—A narrative review. Best Pr. Res. Clin. Anaesthesiol. 2020. In Press. [Google Scholar] [CrossRef]
- Parasher, A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgrad. Med. J. 2020. [Google Scholar] [CrossRef]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Crisan-Dabija, R.; Pavel, C.A.; Popa, I.V.; Tarus, A.; Burlacu, A. “A Chain Only as Strong as Its Weakest Link”: An Up-to-Date Literature Review on the Bidirectional Interaction of Pulmonary Fibrosis and COVID-19. J. Proteome Res. 2020, 19, 4327–4338. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Wu, L.; Huang, J.; Li, H.; Wang, X.; Weng, H. Diagnostic and prognostic predictive values of circulating KL-6 for interstitial lung disease: A PRISMA-compliant systematic review and meta-analysis. Medicine 2020, 99, e19493. [Google Scholar] [CrossRef]
- Qin, H.; Xu, X.P.; Zou, J.; Zhao, X.J.; Wu, H.W.; Zha, Q.F.; Chen, S.; Kang, Y.; Jiang, H.D. Krebs von den Lungen-6 associated with chest high-resolution CT score in evaluation severity of patients with interstitial lung disease. Pulmonology 2019, 25, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Callister, M.E.; Mumby, S.; Quinlan, G.J.; Welsh, K.I.; duBois, R.M.; Evans, T.W. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome. Eur. Respir. J. 2004, 23, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Kohno, N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 2012, 50, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- d’Alessandro, M.; Cameli, P.; Refini, R.M.; Bergantini, L.; Alonzi, V.; Lanzarone, N.; Bennett, D.; Rana, G.D.; Montagnani, F.; Scolletta, S.; et al. Serum KL-6 concentrations as a novel biomarker of severe COVID-19. J. Med. Virol. 2020, 92, 2216–2220. [Google Scholar] [CrossRef]
- Awano, N.; Inomata, M.; Kuse, N.; Tone, M.; Takada, K.; Muto, Y.; Fujimoto, K.; Akagi, Y.; Mawatari, M.; Ueda, A.; et al. Serum KL-6 level is a useful biomarker for evaluating the severity of coronavirus disease 2019. Respir. Investig. 2020, 58, 440–447. [Google Scholar] [CrossRef]
- Deng, K.; Fan, Q.; Yang, Y.; Deng, X.; He, R.; Tan, Y.; Lan, Y.; Deng, X.; Pan, Y.; Wang, Y.; et al. Prognostic roles of KL-6 in disease severity and lung injury in COVID-19 patients: A longitudinal retrospective analysis. J. Med. Virol. 2021, 93, 2505–2512. [Google Scholar] [CrossRef]
- Frix, A.N.; Schoneveld, L.; Ladang, A.; Henket, M.; Duysinx, B.; Vaillant, F.; Misset, B.; Moutschen, M.; Louis, R.; Cavalier, E.; et al. Could KL-6 levels in COVID-19 help to predict lung disease? Respir. Res. 2020, 21, 309. [Google Scholar] [CrossRef]
- Scotto, R.; Pinchera, B.; Perna, F.; Atripaldi, L.; Giaccone, A.; Sequino, D.; Zappulo, E.; Sardanelli, A.; Schiano Moriello, N.; Stanziola, A.; et al. Serum KL-6 Could Represent a Reliable Indicator of Unfavourable Outcome in Patients with COVID-19 Pneumonia. Int. J. Environ. Res. Public Health 2021, 18, 2078. [Google Scholar] [CrossRef]
- Peng, D.H.; Luo, Y.; Huang, L.J.; Liao, F.L.; Liu, Y.Y.; Tang, P.; Hu, H.N.; Chen, W. Correlation of Krebs von den Lungen-6 and fibronectin with pulmonary fibrosis in coronavirus disease 2019. Clin. Chim. Acta Int. J. Clin. Chem. 2021, 517, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Zheng, P.; Bian, X.; Huang, Z.; Huang, H.; Zeng, Y.; Hu, H.; Liu, X.; Zhou, L.; Sun, B.; et al. Exploration and correlation analysis of changes in Krebs von den Lungen-6 levels in COVID-19 patients with different types in China. Biosci. Trends 2020, 14, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Bergantini, L.; Bargagli, E.; d’Alessandro, M.; Refini, R.M.; Cameli, P.; Galasso, L.; Scapellato, C.; Montagnani, F.; Scolletta, S.; Franchi, F.; et al. Prognostic bioindicators in severe COVID-19 patients. Cytokine 2021, 141, 155455. [Google Scholar] [CrossRef] [PubMed]
- Satoh, H.; Kurishima, K.; Ishikawa, H.; Ohtsuka, M. Increased levels of KL-6 and subsequent mortality in patients with interstitial lung diseases. J. Intern. Med. 2006, 260, 429–434. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Nagata, N.; Kumazoe, H.; Oda, K.; Ishimoto, H.; Yoshimi, M.; Takata, S.; Hamada, M.; Koreeda, Y.; Takakura, K.; et al. Prognostic value of serial serum KL-6 measurements in patients with idiopathic pulmonary fibrosis. Respir. Investig. 2017, 55, 16–23. [Google Scholar] [CrossRef]
- Crisan-Dabija, R.A.; Mihaescu, T. Interstitial lung diseases misdiagnosis: A Healthcare Improvement Science (HIS) approach. J. Eur. Respir. J. 2018, 52, PA2983. [Google Scholar] [CrossRef]
- Ohshimo, S.; Ishikawa, N.; Horimasu, Y.; Hattori, N.; Hirohashi, N.; Tanigawa, K.; Kohno, N.; Bonella, F.; Guzman, J.; Costabel, U. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. Respir. Med. 2014, 108, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Ryerson, C.J.; Cottin, V.; Brown, K.K.; Collard, H.R. Acute exacerbation of idiopathic pulmonary fibrosis: Shifting the paradigm. Eur. Respir. J. 2015, 46, 512–520. [Google Scholar] [CrossRef] [Green Version]
- Chiba, S.; Ohta, H.; Abe, K.; Hisata, S.; Ohkouchi, S.; Hoshikawa, Y.; Kondo, T.; Ebina, M. The Diagnostic Value of the Interstitial Biomarkers KL-6 and SP-D for the Degree of Fibrosis in Combined Pulmonary Fibrosis and Emphysema. Pulm. Med. 2012, 2012, 492960. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, H.C.; Lee, B.Y.; Lee, C.K.; Kim, M.Y.; Jang, S.J.; Lee, H.S.; Moon, J.; Colby, T.V.; Kim, D.S. The Value of Biomarkers as Predictors of Outcome in Patients with Rheumatoid Arthritis-Associated Usual Interstitial Pneumonia. Sarcoidosis Vasculitis Diffus. Lung Dis. 2016, 33, 216–223. [Google Scholar]
- Kinoshita, F.; Hamano, H.; Harada, H.; Kinoshita, T.; Igishi, T.; Hagino, H.; Ogawa, T. Role of KL-6 in evaluating the disease severity of rheumatoid lung disease: Comparison with HRCT. Respir. Med. 2004, 98, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, S.; Hiwada, K.; Kobayashi, J.; Kohno, N.; Kawai, T.; Satou, A.; Kasukawa, R.; Kawakami, Y.; Andou, M.; Nakada, G.; et al. Use of the the ED046 kit to analyze serum KL-6 in patients with pneumonitis. Nihon Kyobu Shikkan Gakkai Zasshi 1996, 34, 639–645. [Google Scholar] [PubMed]
- Yokoyama, A.; Kondo, K.; Nakajima, M.; Matsushima, T.; Takahashi, T.; Nishimura, M.; Bando, M.; Sugiyama, Y.; Totani, Y.; Ishizaki, T.; et al. Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology 2006, 11, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, A.; Matsuda, T.; Albertine, K.H.; Koh, H.; Tasaka, S.; Hasegawa, N.; Kohno, N.; Kotani, T.; Morisaki, H.; Takeda, J.; et al. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286, L1088–L1094. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Design | Patients, No | Age Median/Mean ± SD | Parameters Evaluated | Outcomes | Severe Cases, No | Timing |
---|---|---|---|---|---|---|---|
Alessandro et al., 2020 | Observational, prospective, single center | 22 | 63 | KL-6 NK cells | COVID-19 severity prediction | 12 | At admission |
Awano et al., 2020 | Observational, retrospective, single center | 54 | 46 | KL-6 LDH Ferritin D-dimer sIL2-R | COVID-19 severity prediction | 21 | At diagnosis and within 1 week after diagnosis |
Deng et al., 2021 | Observational, retrospective, single center | 166 | 48.0 (mild cases) | KL-6 | -COVID-19 severity prediction -Prognosis of lung injury prediction -Coagulation dysfunction -T cells subsets dysfunctions | 17 | From symptom onset to 6 months post-discharge |
55.0 (severe cases) | |||||||
Frix et al., 2020 | Observational, retrospective, single center | 83 (infected patients) | 72 (infected patients) | KL-6 LDH PLR | -Lung disease severity -Dyspnea severity -Mortality -ICU admission | 36 with high KL-6 level | At admission |
70 (healthy subjects) | 58 (healthy subjects) | ||||||
31 (ILD patients) | 69 (ILD patients) | ||||||
Scotto et al., 2021 | Observational, prospective, single center | 34 | 63 | KL-6 IL-6 | Unfavourable outcome (death) | 32 with oxygen therapy 15 deaths | At time of enrolment and on day 7 ± day 14 |
Peng et al., 2021 | Observational, retrospective, single center | 113 (infected patients) | 56 (severe cases) | KL-6 Fibronectin | -COVID-19 severity -pulmonary fibrosis -lymphocyte count | 36 | At hospital admission |
65 (healthy subjects) | 50 (healthy controls) | ||||||
Xue et al., 2020 | Observational, retrospective, single center | 63 (infected patients) | 57.20 ± 14.25 (severe cases) | KL-6 | -COVID-19 severity -pulmonary lesion area -oxygenation index | 15 | During hospitalization |
43 (non-infected patients) | 55.0 ± 18.84 (non-severe cases) | ||||||
Bergantini et al., 2021 | Observational, retrospective, single center | 24 | 65.2 ± 8 (severe cases) | KL-6 C-peptide CRP IL-6 | COVID-19 severity | 10 | At admission |
62.2 ± 15.6 (non-severe cases) |
Author, Year | Outcomes | Parameters | Results | |
---|---|---|---|---|
Alessandro et al., 2020 | COVID-19 severity | KL-6, U/mL (severe vs. non-severe) | AUC 82.4% (95% CI, 62–100) | p = 0.0129 |
1021 (IQR, 473–1909) vs. 293 (IQR, 197–362) | p = 0.0118 | |||
KL-6, U/mL (non-severe vs. healthy controls) | 293 (IQR, 197–362) vs. 239 (IQR, 132–371) | p = 0.5277 | ||
KL-6, U/mL (severe vs. healthy controls) | 1021 (IQR, 473–1909) vs. 239 (IQR, 132–371) | p = 0.012 | ||
NK cells/µL (non-severe vs. severe) | AUC 78.6% (95% CI, 55–100) | p = 0.0425 | ||
141 (IQR, 88–205) vs. 74 (IQR, 32–101) | p = 0.0449 | |||
Awano et al., 2020 | COVID-19 severity | At Diagnosis | ||
KL-6, U/mL (severe vs. non-severe) | AUC = 0.84 | |||
338 (IQR, 303–529) vs. 223 (IQR, 166–255) | p < 0.001 | |||
LDH, U/L (severe vs. non-severe) | AUC = 0.84 | |||
356 (IQR, 293–480) vs. 208 (IQR, 169–275) | p < 0.001 | |||
sIL2-R, U/mL (severe vs. non-severe) | AUC = 0.82 | |||
1152 (IQR, 715–1773) vs. 616 (IQR, 459–734) | p < 0.001 | |||
Within one week (peak levels) | ||||
KL-6, U/mL (severe vs. non-severe) | AUC = 0.95 | |||
781 (IQR, 429–1435) vs. 234 (IQR, 194–282) | p < 0.001 | |||
LDH, U/L (severe vs. non-severe) | AUC = 0.84 | |||
479 (IQR, 356–700) vs. 243 (IQR, 173–313) | p < 0.001 | |||
sIL2-R, U/mL (severe vs. non-severe) | AUC = 0.88 | |||
1431 (IQR, 1126–1963) vs. 664 (IQR, 500–869) | p < 0.001 | |||
Deng et al., 2021 | COVID-19 severity | KL-6 (mild vs. severe/critical) | AUC = 0.793 (95% CI, 0.718–0.868) | p < 0.001 |
CT lung lesions areas | KL-6 within the previous week | N/A | p = 0.753 | |
KL-6 within the next week | r2 = 0.3153 | p < 0.001 | ||
FDP | KL-6 (severe patients) | r = 0.641 | p = 0.001 | |
INR | KL-6 (severe patients) | r = 0.517 | p = 0.001 | |
PT | KL-6 (severe patients) | r = 0.512 | p = 0.001 | |
Frix et al., 2020 | Lung disease severity | KL-6 (high level vs. low level) | Median SpO2 = 90% vs. median SpO2 = 94%, r = –0.271 | p = 0.013 |
Severe dyspnea | KL-6 | N/A | p = 0.585 | |
ICU admission | KL-6 | N/A | p = 0.434 | |
Mortality | KL-6 | N/A | p > 0.05 | |
Scotto et al., 2021 | Death | KL-6 > 1000 U/mL | OR 11.29 (1.04–122.00) | p < 0.05 |
KL-6 at enrolment | AUC 0.849 (95% CI, 0.702–0.996) | p < 0.01 | ||
IL-6 > 100 pg/mL | OR 4.03 (0.39–41.78) | p = 0.243 | ||
Peng et al., 2021 | COVID-19 severity | KL-6 | AUC = 0.8266 | p < 0.001 |
Pulmonary fibrosis | KL-6 | N/A | p < 0.05 | |
Fibronectin | N/A | p > 0.05 | ||
Xue et al., 2020 | COVID-19 severity | KL-6, U/mL (severe vs. non-severe) | 676.6 ± 506.70 vs. 241.2 ± 207.90 | p < 0.05 |
Pulmonary lesion area | KL-6 | N/A | p < 0.05 | |
Bergantini et al., 2021 | COVID-19 severity | KL-6, U/mL (severe vs. non-severe) | 903 (IQR, 333.8–1956) vs. 320 (IQR, 226.3–927.8) | p = 0.035 |
IL-6 | AUC 0.85 (95% CI, 0.79–1) | p = 0.003 | ||
KL-6 + IL-6 + CRP | AUC 0.95 (95% CI, 0.86–1) | p = 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisan-Dabija, R.; Covic, A.; Brinza, C.; Popa, I.V.; Burlacu, A. Involvement of KL-6 Biomarker in Interstitial Lung Disease Induced by SARS-CoV-2 Infection: A Systematic Review. Appl. Sci. 2021, 11, 3482. https://doi.org/10.3390/app11083482
Crisan-Dabija R, Covic A, Brinza C, Popa IV, Burlacu A. Involvement of KL-6 Biomarker in Interstitial Lung Disease Induced by SARS-CoV-2 Infection: A Systematic Review. Applied Sciences. 2021; 11(8):3482. https://doi.org/10.3390/app11083482
Chicago/Turabian StyleCrisan-Dabija, Radu, Adrian Covic, Crischentian Brinza, Iolanda Valentina Popa, and Alexandru Burlacu. 2021. "Involvement of KL-6 Biomarker in Interstitial Lung Disease Induced by SARS-CoV-2 Infection: A Systematic Review" Applied Sciences 11, no. 8: 3482. https://doi.org/10.3390/app11083482
APA StyleCrisan-Dabija, R., Covic, A., Brinza, C., Popa, I. V., & Burlacu, A. (2021). Involvement of KL-6 Biomarker in Interstitial Lung Disease Induced by SARS-CoV-2 Infection: A Systematic Review. Applied Sciences, 11(8), 3482. https://doi.org/10.3390/app11083482