Effect of Steaming on Vitamin Retention in Tubers from Eight Cultivars of Potato (Solanum tuberosum L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Samples
2.2. Samples Preparation
2.3. VitB9 Content Measurement
2.4. VitC Content Measurement
2.5. VitE Content Measurement
2.6. Data Analyses
3. Results
3.1. VitB9, VitC, and VitE Content
3.2. Effect of Steaming On Vitamin Retention in Potato Tubers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-CH3-H4folate | 5-methyl-tetrahydrofolate |
5-CHO-H4folate | 5-formyl-tetrahydrofolate |
H4folate | tetrahydrofolate |
H2folate | dihydrofolate |
5,10-CH=H4folate | 5,10-methenyl-tetrahydrofolate |
α-T | α-tocopherol |
α-T3 | α-tocotrienol |
β-T3 | β-tocotrienol |
γ-T3 | γ-tocotrienol |
δ-T | δ-tocopherol |
δ-T3 | γ-tocotrienol |
VitC | L-ascorbic acid |
VitB9 | tetrahydrofolate and its derivatives |
VitE | tocopherol and tocotrienol |
HPLC–MS | high-performance liquid chromatography–mass spectrometry |
FW | fresh weight |
DW | dry weight |
stdv | standard deviation |
References
- Gao, B.; Huang, W.; Xue, X.; Hu, Y.; Huang, Y.; Wang, L.; Ding, S.; Cui, S. Comprehensive environmental assessment of potato as staple food policy in China. Int. J. Environ. Res. Public Health 2019, 16, 2700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, Y.; Yu, X.; Hou, H.; Wang, H.; Fang, Y. Effects of vertically rotary sub-soiling tillage on water utilization and yield of potato in semi-arid area of northwest China. Ying Yong Sheng Tai Xue Bao 2018, 29, 3293–3301. [Google Scholar] [CrossRef]
- Wei, J.; Gao, J.; Cen, K. Levels of eight heavy metals and health risk assessment considering food consumption by China’s residents based on the 5th China total diet study. Sci. Total Environ. 2019, 689, 1141–1148. [Google Scholar] [CrossRef]
- Robertson, T.M.; Alzaabi, A.Z.; Robertson, M.D.; Fielding, B.A. Starchy carbohydrates in a healthy diet: The role of the humble potato. Nutrients 2018, 10, 1764. [Google Scholar] [CrossRef] [Green Version]
- Navarre, D.A.; Brown, C.R.; Sathuvalli, V.R. Potato vitamins, minerals and phytonutrients from a plant biology perspective. Am. J. Potato Res. 2019. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Am. Soc. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, J.M.; Holm, D.G.; Broeckling, C.D.; Prenni, J.E.; Heuberger, A.L. Metabolomics and ionomics of potato tuber reveals an influence of cultivar and market class on human nutrients and bioactive compounds. Front. Nutr. 2018, 5, 36. [Google Scholar] [CrossRef]
- Van Der Straeten, D.; Bhullar, N.K.; De Steur, H.; Gruissem, W.; Mackenzie, D.; Pfeiffer, W.; Qaim, M.; Strobbe, S.; Tohme, J.; Trijatmiko, K.R.; et al. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat. Commun. 2020, 11, 5203. [Google Scholar] [CrossRef] [PubMed]
- Štěrbová, L.; Čepková, P.H.; Viehmannová, I.; Huansi, D.C. Effect of thermal processing on phenolic content tocopherols and antioxidant activity of Sacha Inchi kernels. J. Food Process. Preserv. 2017, 41, e12848. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, Y.; Zhang, F.; Guo, X.; Liao, Z. Effect of thermal processing on carotenoids and folate changes in six varieties of sweet potato (Ipomoes batata L.). Foods 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Buratti, S.; Cappa, C.; Benedetti, S.; Giovanelli, G. Influence of cooking conditions on nutritional properties and sensory characteristics interpreted by E-senses: Case-study on selected vegetables. Foods 2020, 9, 607. [Google Scholar] [CrossRef]
- Blancquaert, D.; Storozhenko, S.; Loizeau, K.; De Steur, H.; De Brouwer, V.; Viaene, J.; Ravanel, S.; Rébeillé, F.; Lambert, W.; Van Der Straeten, D. Folates and folic acid: From fundamental research toward sustainable health. Crit. Rev. Plant Sci. 2010, 29, 14–35. [Google Scholar] [CrossRef]
- Locato, V.; Cimini, S.; De Gara, L. Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Front. Plant Sci. 2013, 4, 152. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.G. Vitamin E regulatory mechanisms. Annu. Rev. Nutr. 2007, 27, 347–362. [Google Scholar] [CrossRef]
- Available online: www.baidu.com (accessed on 17 April 2021).
- Ren, D.; Zhang, L.; Liu, Y.; Tian, Z.; Gong, X. Evaluation of nitrogen efficiency on potatoes with different genotypes in cold and arid regions of Northern China. Agric. Res. Arid Areas 2020, 38, 13–21. [Google Scholar] [CrossRef]
- Liu, R.; Tao, L.; Wan, K. The effect of microwave treatment on the storage quality of ‘Xindaping’ potato. Food Ferment. Ind. 2021, 47, 168–173. [Google Scholar] [CrossRef]
- Wan, X.; Han, L.; Yang, M.; Zhang, H.; Zhang, C.; Hu, P. Simultaneous extraction and determination of mono-/polyglutamyl folates using high-performance liquid chromatography-tandem mass spectrometry and its applications in starchy crops. Anal. Bioanal. Chem. 2019, 411, 2891–2904. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Lian, T.; Wan, X.; Jiang, L.; Han, L.; Zhang, C.; Liang, Q. Folate monoglutamate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS. J. Food Compos. Anal. 2020, 91, 10351. [Google Scholar] [CrossRef]
- Konda, A.R.; Nazarenus, T.J.; Nguyen, H.; Yang, J.; Gelli, M.; Swenson, S.; Shipp, J.M.; Schmidt, M.A.; Cahoon, R.E.; Ciftci, O.N.; et al. Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metab. Eng. 2020, 57, 63–73. [Google Scholar] [CrossRef]
- Goyer, A.; Picard, M.; Hellmann, H.A.; Mooney, S.L. Effect of low-temperature storage on the content of folate, vitamin B6, ascorbic acid, chlorogenic acid, tyrosine, and phenylalanine in potatoes. J. Sci. Food Agric. 2019, 99, 4842–4848. [Google Scholar] [CrossRef]
- Robinson, B.R.; Sathuvalli, V.; Bamberg, J.; Goyer, A. Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 2015, 6, 1300–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Külen, O.; Stushnoff, C.; Holm, D.G. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. J. Sci. Food Agric. 2013, 93, 2437–2444. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Shi, B.; Chai, Y.; Han, N.; Zhu, M.; Bian, H. Overexpression of HvHGGT enhances tocotrienol levels and antioxidant activity in Barley. J. Agric. Food Chem. 2017, 65, 5181–5187. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Han, N.; Liu, C.; Buerte, B.; Zhou, C.; Chen, J.; Wang, M.; Zhang, Y.; Tang, Y.; Zhu, M.; et al. Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genomeediting. Ann. Bot. 2020, 126, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, J.; Li, W.; Wen, T.; Li, T.; Guo, X.; Liu, R. Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea mays L.) during kernel development. J. Agric. Food Chem. 2020, 100, 5230–5238. [Google Scholar] [CrossRef]
- Upadhyaya, D.C.; Bagri, D.S.; Upadhyaya, C.P.; Kumar, A.; Thiruvengadam, M.; Jain, S.K. Genetic engineering of potato (Solanum tuberosum L.) for enhanced α-tocopherols and abiotic stress tolerance. Physiol. Plant 2020. [Google Scholar] [CrossRef]
- Diamante, M.S.; Borges, C.V.; Minatel, I.O.; Jacomino, A.P.; Basílio, L.S.P.; Monteiro, G.C.; Corrêa, C.R.; de Oliveira, R.A.; Lima, G.P.P. Domestic cooking practices influence the carotenoid and tocopherol content in colored cauliflower. Food Chem. 2021, 340, 127901. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, K.; Shariful, I.; Ye, X.; Zhang, C. Folate content and retention in wheat grains and wheat-based foods: Effects of storage, processing, and cooking methods. Food Chem. 2020, 333, 127459. [Google Scholar] [CrossRef]
- García-Herrera, P.; Morales, P.; Cámara, M.; Fernández-Ruiz, V.; Tardío, J.; Sánchez-Mata, M.C. Nutritional and phytochemical composition of Mediterranean wild vegetables after culinary treatment. Foods 2020, 9, 1761. [Google Scholar] [CrossRef] [PubMed]
- McKillop, D.J.; Pentieva, K.; Daly, D.; McPartlin, J.M.; Hughes, J.; Strain, J.J.; Scott, M.J.; McNulty, H. The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet. Br. J. Nutr. 2002, 88, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, W.; Lian, T.; Zhang, C. Manipulation of metabolic pathways to develop vitamin-enriched crops for human health. Front. Plant Sci. 2017, 8, 937. [Google Scholar] [CrossRef]
- Han, J.; Kozukue, N.; Young, K.; Lee, K.; Friedman, M. Distribution of ascorbic acid in potato tubers and in home-processed and commercial potato foods. J. Agric. Food Chem. 2004, 52, 6516–6521. [Google Scholar] [CrossRef] [PubMed]
- Grudzińska, M.; Czerko, Z.; Zarzyńska, K.; Borowska-Komenda, M. Bioactive compounds in potato tubers: Effects of farming system, cooking method, and flesh color. PLoS ONE 2016, 11, e0153980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Choi, Y.; Jeong, H.S.; Lee, J.; Sung, J. Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Food Sci. Biotechnol. 2018, 27, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Chitchumroonchokchai, C.; Diretto, G.; Parisi, B.; Giuliano, G.; Failla, M.L. Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. PLoS ONE 2017, 12, e0187102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lepeleire, J.; Strobbe, S.; Verstraete, J.; Blancquaert, D.; Ambach, L.; Visser, R.G.; Stove, C.; Van Der Straeten, D. Folate biofortification of potato by tuber-specific expression of four folate biosynthesis genes. Mol. Plant 2018, 11, 175–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szarka, A.; Tomasskovics, B.; Banhegyi, G. The ascorbate-glutathione-alpha-tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 2012, 13, 4458–4483. [Google Scholar] [CrossRef] [Green Version]
Cultivar Name | Approval Number | Yield (kg 667 m−2) | Starch Content (%) | Resources |
---|---|---|---|---|
‘L8’ | Application approved in Heilongjiang province in Dec. 2020 | 2226.89 | 18.95 | Personal communicated with G.W. |
‘V7’ | Personal provided by G.W. | None | 9.20 | Personal provided by G.W. |
‘YouJin’ | Jishenshu2015001 | 2397–2813 | 14.33 | www.baidu.com [15] |
‘TianShu 11’ | Guoshenshu20014006 | 2043–2522 | 16.05 | www.baidu.com [15] |
‘XiSun 6’ | Mengshenshu2016003 | 2191–3617 | 15.10 | www.baidu.com [15] Ren et al., 2020 [16] |
‘XinDaPing’ | Ganshenshu2005004 | 929–1383 | 20.19 | www.baidu.com [15] Liu et al., 2021 [17] |
‘QingShu 9’ | Qingshenshu200600 | 2250–4200 | 19.76 | www.baidu.com [15] |
‘TianShu 12’ | Ganshenshu2005003 | 1279 | 16.05 | www.baidu.com [15] |
Compound | Minimum Content | Maximum Content |
---|---|---|
Water (%) | 77.47 | 84.86 |
Vitamin B9 (μg/100 g FW) | 8.60 ± 2.25 | 19.93 ± 3.83 |
Vitamin C (mg/100 g FW) | 46.67 ± 1.39 | 155.44 ± 7.33 |
Vitamin E (mg/kg FW) | 15.34 ± 2.11 | 33.82 ± 1.17 |
Cultivar Name | 5-CH3-H4folate (μg/100 g FW) | Proportion of 5-CH3-H4folate (%) | 5-CHO-H4folate (μg/100 g FW) | Proportion of 5-CHO-H4folate (%) | 5,10-CH=H4folate (μg/100 g FW) | Proportion of 5,10-CH = H4folate (%) | H2folate (μg/100 g FW) | Proportion of H2folate (%) | H4folate (μg/100 g FW) | Proportion of H4folate (%) | Total Vitamin B9 (μg/100 g FW) | Vitamin C (mg/100g FW) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
‘V7’ | 10.09 ± 1.73 | 50.7 | 6.28 ± 1.77 | 31.5 | 1.31 ± 0.08 | 6.6 | 0.54 ± 0.10 | 2.7 | 1.70 ± 0.13 | 8.5 | 19.92 ± 0.09 | 46.67 ± 1.40 |
‘L8’ | 5.62 ± 0.17 | 49.9 | 3.09 ± 0.79 | 27.5 | 0.98 ± 0.05 | 8.7 | 0.34 ± 0.25 | 3.0 | 1.23 ± 0.19 | 10.9 | 11.26 ± 0.62 | 74.27 ± 3.58 |
‘YouJin’ | 7.57 ± 0.05 | 45.6 | 5.33 ± 0.82 | 32.1 | 1.42 ± 0.21 | 8.6 | 0.35 ± 0.09 | 2.1 | 1.93 ± 0.11 | 11.6 | 16.60 ± 0.93 | 50.79 ± 0.55 |
‘TianShu 11’ | 6.28 ± 0.25 | 41.5 | 5.08 ± 0.13 | 33.6 | 1.36 ± 0.05 | 9.0 | 0.61 ± 0.04 | 4.0 | 1.80 ± 0.34 | 11.9 | 15.15 ± 0.63 | 109.80 ± 12.20 |
‘XiSen 6’ | 4.28 ± 1.24 | 49.8 | 2.29 ± 0.42 | 26.6 | 0.87 ± 0.37 | 10.1 | 0.11 ± 0.09 | 1.3 | 1.05 ± 0.12 | 12.2 | 8.60 ± 2.05 | 102.86 ± 52.24 |
‘XinDaPing’ | 6.58 ± 0.62 | 59.0 | 2.72 ± 0.94 | 24.4 | 0.85 ± 0.14 | 7.6 | 0.13 ± 0.10 | 1.2 | 0.87 ± 0.36 | 7.8 | 11.16 ± 1.96 | 155.44 ± 7.33 |
‘QingShu 9’ | 5.74 ± 0.75 | 54.3 | 2.93 ± 0.77 | 27.7 | 0.94 ± 0.19 | 8.9 | 0.00 ± 0.00 | 0.0 | 0.96 ± 0.01 | 9.1 | 10.58 ± 1.73 | 105.44 ± 7.33 |
‘TianShu 12’ | 4.70 ± 0.03 | 43.5 | 3.98 ± 0.71 | 36.8 | 0.97 ± 0.01 | 9.0 | 0.07 ± 0.10 | 0.7 | 1.08 ± 0.32 | 10.0 | 10.80 ± 1.11 | 65.74 ± 4.12 |
Cultivar Name | δ-T3 (mg/kg FW) | Proportion of δ-T3 (%) | γ-T3 (mg/kg FW) | Proportion of γ-T3 (%) | α-T3 (mg/kg FW) | Proportion of α-T3 (%) | Total T3 (mg/kg FW) | Proportion of total T3 (%) | δ-T (mg/kg FW) | Proportion of δ-T (%) | α-T (mg/kg FW) | Proportion of α-T (%) | Total T (mg/kg FW) | Proportion of Total T (%) | Total Vitamin E (mg/kg FW) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘V7’ | 0.60 ± 0.05 | 3.7 | 4.24 ± 0.08 | 26.2 | 2.10 ± 0.32 | 13.0 | 6.93 ± 0.45 | 42.9 | 8.40 ± 3.55 | 51.9 | 0.84 ± 0.04 | 5.2 | 9.24 ± 3.51 | 57.1 | 16.17 ± 3.07 |
‘L8’ | 0.72 ± 0.25 | 4.7 | 4.82 ± 1.16 | 31.4 | 2.66 ± 0.56 | 17.3 | 8.20 ± 1.96 | 53.5 | 6.33 ± 0.06 | 41.3 | 0.81 ± 0.08 | 5.3 | 7.14 ± 0.14 | 46.5 | 15.34 ± 2.11 |
‘YouJin’ | 1.34 ± 0.15 | 4.2 | 9.52 ± 0.65 | 29.9 | 4.79 ± 0.49 | 15.0 | 15.66 ± 0.32 | 49.2 | 14.70 ± 1.66 | 46.2 | 1.48 ± 0.53 | 4.7 | 16.18 ± 1.23 | 50.8 | 31.83 ± 0.80 |
‘TianShu 11’ | 0.86 ± 0.74 | 5.0 | 5.93 ± 4.18 | 34.3 | 3.12 ± 2.27 | 18.1 | 9.91 ± 7.19 | 57.4 | 6.75 ± 0.30 | 39.1 | 0.62 ± 0.04 | 3.6 | 7.37 ± 0.34 | 42.6 | 17.28 ± 7.53 |
‘XiSen 6’ | 1.16 ± 0.3 | 4.0 | 7.94 ± 1.58 | 27.3 | 4.25 ± 1.20 | 14.6 | 13.35 ± 3.07 | 45.9 | 14.62 ± 1.11 | 50.2 | 1.13 ± 0.32 | 3.9 | 15.75 ± 1.43 | 54.1 | 29.10 ± 1.64 |
‘XinDaPing’ | 1.21 ± 0.02 | 5.0 | 9.32 ± 0.60 | 38.7 | 5.02 ± 0.20 | 20.9 | 15.55 ± 0.82 | 64.6 | 7.77 ± 0.06 | 32.3 | 0.75 ± 0.04 | 3.1 | 8.52 ± 0.02 | 35.4 | 24.07 ± 0.80 |
‘QingShu 9’ | 1.86 ± 0.23 | 5.5 | 13.82 ± 0.01 | 40.9 | 7.50 ± 0.21 | 22.2 | 23.18 ± 0.01 | 68.5 | 10.15 ± 1.17 | 30.0 | 0.49 ± 0.00 | 1.4 | 10.65 ± 1.16 | 31.5 | 33.83 ± 1.17 |
‘TianShu 12’ | 0.84 ± 0.74 | 4.8 | 4.97 ± 1.58 | 28.6 | 2.76 ± 0.82 | 15.9 | 8.57 ± 2.48 | 49.4 | 7.39 ± 0.81 | 42.6 | 1.40 ± 0.03 | 8.1 | 8.79 ± 0.78 | 50.6 | 17.37 ± 3.26 |
Cultivar Name | Total Vitamin B9 in Raw Tubers (μg/100 g DW) | Total Vitamin B9 in Steamed Tubers (μg/100 g DW) | Folate CP (%) | Vitamin C in Raw Tubers (mg/100g DW) | Vitamin C in Steamed Tubers (mg/100g DW) | Vitamin C CP (%) | Total Vitamin E in Raw Tubers (mg/kg DW) | Total Vitamin E in Steamed Ttubers (mg/kg DW) | Vitamin E CP (%) |
---|---|---|---|---|---|---|---|---|---|
‘YouJin’ | 96.66 ± 5.44 | 47.87 ± 1.93 | −50.4 ± 2.8 | 295.78 ± 3.18 | 301.88 ± 8.63 | 2.1 ± 2.3 | 184.45 ± 4.79 | 78.41 ± 8.63 | −57.5 ± 3.9 |
‘V7’ | 131.68 ± 0.62 | 63.29 ± 4.14 | −51.9 ± 2.6 | 308.33 ± 9.21 | 214.06 ± 30.61 | −30.5 ± 8.1 | 105.93 ± 20.35 | 83.70 ± 36.27 | −19.5 ± 31.4 |
‘L8’ | 53.02 ± 2.9 | 36.49 ± 6.97 | −31.1 ± 11.2 | 349.41 ±16.82 | 146.71 ± 89.02 | −58.0 ± 19.5 | 72.47 ± 10.01 | 155.48 ± 32.35 | 116.6 ± 44.3 |
‘TianShu 11’ | 89.34 ± 3.73 | 83.99 ± 2.54 | −5.9 ± 4.0 | 647.31 ± 71.46 | 440.97 ± 4.92 | −31.5 ± 6.0 | 101.21 ± 43.81 | 277.70 ± 27.29 | 202.8 ± 110.0 |
‘TianShu 12’ | 63.33 ± 6.48 | 62.14 ± 5.29 | −1.4 ± 10.7 | 385.47 ± 24.16 | 283.03 ± 47.24 | −26.4 ± 9.6 | 101.21 ± 19.08 | 71.94 ± 7.24 | −27.6 ±12.7 |
‘XinDaPing’ | 49.56 ± 8.72 | 82.31 ± 16.27 | 68.7 ± 36.6 | 690.12 ± 32.56 | 393.50 ± 29.38 | −42.9 ± 4.2 | 107.70 ± 3.57 | 286.48 ± 6.79 | 166.1 ± 8.9 |
‘QingShu 9’ | 48.84 ± 8.00 | 37.43 ± 10.21 | −22.3 ± 20.3 | 488.87 ± 60.16 | 229.66 ± 35.11 | −52.7 ± 6.6 | 157.06 ± 5.54 | 116.65 ± 11.73 | −25.7 ± 6.5 |
‘XiSen 6’ | 55.32 ± 13.21 | 27.99 ± 6.88 | −47.9 ± 14.7 | 661.99 ± 336.25 | 151.24 ± 28.06 | −73.8 ± 11.4 | 185.76 ± 10.16 | 115.28 ± 6.22 | −37.9 ± 3.9 |
Cultivar | Vitamin B9 (μg/100 g FW) | Vitamin C (mg/100 g FW) | Vitamin E (mg/kg FW) |
---|---|---|---|
‘V7’ | 10.91 ± 0.71 | 36.9 ± 5.27 | 14.50 ± 6.29 |
‘L8’ | 7.80 ± 1.49 | 31.37 ± 19.03 | 33.11 ± 6.87 |
‘YouJin’ | 8.74 ± 0.35 | 55.11 ± 1.58 | 14.34 ± 1.57 |
‘TianShu 11’ | 14.48 ± 0.44 | 76.03 ± 0.85 | 48.03 ± 4.71 |
‘XiSen 6’ | 5.62 ± 1.38 | 30.39 ± 5.64 | 23.13 ± 1.25 |
‘XinDaPing’ | 17.83 ± 3.53 | 85.24 ± 6.36 | 61.71 ± 1.43 |
‘QingShu 9’ | 8.27 ± 2.26 | 50.74 ± 7.76 | 25.57 ± 2.57 |
‘TianShu 12’ | 10.60 ± 0.91 | 48.3 ± 8.06 | 12.35 ± 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ren, Y.; Wang, G.; Sun, H.; Zhu, Y.; Wang, L.; Zhang, C.; Zhang, L.; Jiang, L. Effect of Steaming on Vitamin Retention in Tubers from Eight Cultivars of Potato (Solanum tuberosum L.). Appl. Sci. 2021, 11, 3669. https://doi.org/10.3390/app11083669
Liu J, Ren Y, Wang G, Sun H, Zhu Y, Wang L, Zhang C, Zhang L, Jiang L. Effect of Steaming on Vitamin Retention in Tubers from Eight Cultivars of Potato (Solanum tuberosum L.). Applied Sciences. 2021; 11(8):3669. https://doi.org/10.3390/app11083669
Chicago/Turabian StyleLiu, Ji’an, Ying Ren, Guiping Wang, Hui Sun, Yongyong Zhu, Lei Wang, Chunyi Zhang, Lan Zhang, and Ling Jiang. 2021. "Effect of Steaming on Vitamin Retention in Tubers from Eight Cultivars of Potato (Solanum tuberosum L.)" Applied Sciences 11, no. 8: 3669. https://doi.org/10.3390/app11083669
APA StyleLiu, J., Ren, Y., Wang, G., Sun, H., Zhu, Y., Wang, L., Zhang, C., Zhang, L., & Jiang, L. (2021). Effect of Steaming on Vitamin Retention in Tubers from Eight Cultivars of Potato (Solanum tuberosum L.). Applied Sciences, 11(8), 3669. https://doi.org/10.3390/app11083669