FEM-CFD Simulation and Experimental Study of Compound Parabolic Concentrator (CPC) Solar Collectors with and without Fins for Residential Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compound Parabolic Concentrator (CPC) Solar Collector
2.2. Experimental Settings
2.3. Numerical Methodology
2.4. Optical Ray Tracing Simulation
2.5. Data Processing of the Ray Tracing Analysis Using MATLAB
2.6. Coupled FEM-CFD Model in Abaqus
2.6.1. FEM Model
2.6.2. CFD Model
2.6.3. CPC Absorber Models
3. Results and Discussion
3.1. Experimental Results
3.2. Numerical Results
3.2.1. Model Validation and CPC Thermal Performance
3.2.2. Effect of Fins on Thermal Performance at Different Seasons of the Year
3.2.3. Effect of Mass Flow Rate
3.3. Discussion
4. Conclusions
- Using a small-size, low-temperature CPC collector with an aperture area of ~0.18 m2 for water heating in residential applications is feasible; however, the design of the CPC should be optimized to obtain higher temperatures.
- The proposed numerical methodology, which included ray tracing simulations to map the heat flux on the absorber surface of the FEM model, which was coupled with a CFD model to estimate the temperature of the water, was capable of describing the thermal performance of the CPC collector.
- Mass flow rate is an important parameter that should be determined and optimized to obtain the maximum temperature difference between inlet and outlet temperatures and the optimal thermal efficiency while at the same time providing enough hot water.
- The best thermal performance of the CPC collectors in winter was observed when absorbers with fins were used, due to the increase in surface area.
- The use of copper fins in the absorber could also result in an increase in the cost of the fabrication of the CPC collector. Therefore, a comprehensive techno-economic analysis is needed to complement the thermal performance study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, S. Renewable energy policy trends and recommendations for GCC countries. Energy Transit. 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Kambezidis, H.D.; Psiloglou, B.E. Estimation of the Optimum Energy Received by Solar Energy Flat-Plate Convertors in Greece Using Typical Meteorological Years. Part I: South-Oriented Tilt Angles. Appl. Sci. 2021, 11, 1547. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Calise, F.; Shukla, A.; Ingrao, C. A review on recent advancements in performance enhancement techniques for low-temperature solar collectors. Energy Convers. Manag. 2020, 222, 113246. [Google Scholar] [CrossRef]
- Fendrich, M.A.; Quaranta, A.; Orlandi, M.; Bettonte, M.; Miotello, A. Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies. Appl. Sci. 2019, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Ehyaei, M.A.; Doustgani, A.; El Haj Assad, M.; Hmida, A.; Jamali, D.H.; Kumar, R.; Li, Z.X.; Razmjoo, A. Recent residential applications of low-temperature solar collector. J. Clean. Prod. 2021, 279, 123549. [Google Scholar] [CrossRef]
- Ebadi, H.; Zare, D. Performance evaluation and thermo-economic analysis of a non-evacuated CPC solar thermal hybrid system: An experimental study. Int. J. Sustain. Energy 2020, 39, 719–743. [Google Scholar] [CrossRef]
- Tian, M.; Su, Y.; Zheng, H.; Pei, G.; Li, G.; Riffat, S. A review on the recent research progress in the compound parabolic concentrator (CPC) for solar energy applications. Renew. Sustain. Energy Rev. 2018, 82, 1272–1296. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Yu, L.; Yang, S.; Li, K.; Wang, J.; Lund, P.D.; Zhang, Y. A Review of the Compound Parabolic Concentrator (CPC) with a Tubular Absorber. Energies 2020, 13, 695. [Google Scholar] [CrossRef] [Green Version]
- Winston, R. Principles of solar concentrators of a novel design. Sol. Energy 1974, 16, 89–95. [Google Scholar] [CrossRef]
- Kalogirou, S.A. 4—Nontracking solar collection technologies for solar heating and cooling systems. In Advances in Solar Heating and Cooling; Wang, R.Z., Ge, T.S., Eds.; Woodhead Publishing: Duxford, UK, 2016; pp. 63–80. [Google Scholar] [CrossRef]
- Bellos, E.; Korres, D.; Tzivanidis, C.; Antonopoulos, K.A. Design, simulation and optimization of a compound parabolic collector. Sustain. Energy Technol. Assess. 2016, 16, 53–63. [Google Scholar] [CrossRef]
- Chaabane, M.; Mhiri, H.; Bournot, P. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with a storage tank equipped with radial fins of rectangular profile. Heat Mass Transf. 2013, 49, 107–115. [Google Scholar] [CrossRef]
- Lara, F.; Cerezo, J.; Acuña, A.; González-Ángeles, A.; Velázquez, N.; Ruelas, A.; López-Zavala, R. Design, optimization and comparative study of a solar CPC with a fully illuminated tubular receiver and a fin inverted V-shaped receiver. Appl. Therm. Eng. 2021, 184, 116141. [Google Scholar] [CrossRef]
- Zauner, C.; Hengstberger, F.; Hohenauer, W.; Reichl, C.; Simetzberger, A.; Gleiss, G. Methods for Medium Temperature Collector Development Applied to a CPC Collector. Energy Procedia 2012, 30, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, J.G.; Peña-Cruz, M.I.; Terron-Hernandez, M.; Valentín, L. Low Cost High-Accuracy Compound Parabolic Concentrator System—A Manufacturing Methodology. J. Sol. Energy Eng. 2020, 143, 025001. [Google Scholar] [CrossRef]
- Terrón-Hernández, M.; Peña-Cruz, M.I.; Carrillo, J.G.; Diego-Ayala, U.; Flores, V. Solar ray tracing analysis to determine energy availability in a CPC designed for use as a residential water heater. Energies 2018, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Osório, T.; Horta, P.; Marchã, J.; Collares-Pereira, M. One-Sun CPC-type solar collectors with evacuated tubular receivers. Renew. Energy 2019, 134, 247–257. [Google Scholar] [CrossRef]
- Benrejeb, R.; Helal, O.; Chaouachi, B. Optical and thermal performances improvement of an ICS solar water heater system. Sol. Energy 2015, 112, 108–119. [Google Scholar] [CrossRef]
- Su, Z.; Gu, S.; Vafai, K. Modeling and simulation of ray tracing for compound parabolic thermal solar collector. Int. Commun. Heat Mass Transf. 2017, 87, 169–174. [Google Scholar] [CrossRef]
- Gunjo, D.G.; Mahanta, P.; Robi, P.S. CFD and experimental investigation of flat plate solar water heating system under steady state condition. Renew. Energy 2017, 106, 24–36. [Google Scholar] [CrossRef]
- Badiei, Z.; Eslami, M.; Jafarpur, K. Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling. Energy 2020, 192, 116719. [Google Scholar] [CrossRef]
- Korres, D.N.; Tzivanidis, C. Numerical investigation and optimization of an experimentally analyzed solar CPC. Energy 2019, 172, 57–67. [Google Scholar] [CrossRef]
- Yuan, G.; Fan, J.; Kong, W.; Furbo, S.; Perers, B.; Sallaberry, F. Experimental and computational fluid dynamics investigations of tracking CPC solar collectors. Sol. Energy 2020, 199, 26–38. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Jiang, L.; Winston, R. Coupled optical-thermal modeling, design and experimental testing of a novel medium-temperature solar thermal collector with pentagon absorber. Sol. Energy 2018, 173, 1248–1261. [Google Scholar] [CrossRef]
- Carlini, M.; McCormack, S.J.; Castellucci, S.; Ortega, A.; Rotondo, M.; Mennuni, A. Modelling and Numerical Simulation for an Innovative Compound Solar Concentrator: Thermal Analysis by FEM Approach. Energies 2020, 13, 548. [Google Scholar] [CrossRef] [Green Version]
- Carlini, M.; Rotondo, M.; Selli, S.; Mennuni, A. Simulation of a coil cooling system for an innovative compound solar concentrator plant by FEM approach. Energy Rep. 2020, 6, 129–142. [Google Scholar] [CrossRef]
- Tonatiuh. A Monte Carlo Ray Tracer for the Optical Simulation of Solar Concentrating Systems. Available online: https://iat-cener.github.io/tonatiuh/ (accessed on 11 December 2020).
- MATLAB. MathWorks, MATLAB R2015b. Available online: http://www.mathworks.com/products/matlab/ (accessed on 15 January 2021).
- ABAQUS. Abaqus Analysis User’s Guide, Version 2016; Dassault Systèmes: Providence, RI, USA, 2015. [Google Scholar]
- Cardoso, J.P.; Mutuberria, A.; Marakkos, C.; Schoettl, P.; Osório, T.; Les, I. New functionalities for the Tonatiuh ray-tracing software. AIP Conf. Proc. 2018, 2033, 210010. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.L.; Sarviya, R.M.; Bhagoria, J.L. Heat loss study of trapezoidal cavity absorbers for linear solar concentrating collector. Energy Convers. Manag. 2010, 51, 329–337. [Google Scholar] [CrossRef]
- Ghodbane, M.; Bellos, E.; Said, Z.; Boumeddane, B.; Hussein, A.K.; Kolsi, L. Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. J. Therm. Anal. Calorim. 2021, 143, 4197–4215. [Google Scholar] [CrossRef]
- Wang, F.; Shuai, Y.; Yuan, Y.; Liu, B. Effects of material selection on the thermal stresses of tube receiver under concentrated solar irradiation. Mater. Des. 2012, 33, 284–291. [Google Scholar] [CrossRef]
- Satti, J.R.; Das, D.K.; Ray, D.R. Measurements of Densities of Propylene Glycol-Based Nanofluids and Comparison with Theory. J. Therm. Sci. Eng. Appl. 2016, 8, 021021. [Google Scholar] [CrossRef]
- Li, X.; Dai, Y.J.; Li, Y.; Wang, R.Z. Comparative study on two novel intermediate temperature CPC solar collectors with the U-shape evacuated tubular absorber. Sol. Energy 2013, 93, 220–234. [Google Scholar] [CrossRef]
- Panchal, R.; Gomes, J.; Cabral, D.; Eleyele, A.; Lança, M. Evaluation of Symmetric C-PVT Solar Collector Designs with Vertical Bifacial Receivers. In Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019, Santiago, Chile, 4–7 November 2019; pp. 165–176. Available online: http://proceedings.ises.org/paper/swc2019/swc2019-0019-Cabral.pdf (accessed on 12 April 2021).
- Cabral, D.; Gomes, J.; Karlsson, B. Performance evaluation of non-uniform illumination on a transverse bifacial PVT receiver in combination with a CPC geometry. Sol. Energy 2019, 194, 696–708. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, C.; Shirazi, A.; Bany Mousa, O.; Moscia, F.; Scott, J.A.; Taylor, R.A. Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications. Appl. Energy 2017, 190, 1159–1173. [Google Scholar] [CrossRef]
- Abdullah, A.L.; Misha, S.; Tamaldin, N.; Rosli, M.A.M.; Sachit, F.A. Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system. Case Stud. Therm. Eng. 2020, 18, 100595. [Google Scholar] [CrossRef]
- Manoram, R.B.; Moorthy, R.S.; Ragunathan, R. Investigation on influence of dimpled surfaces on heat transfer enhancement and friction factor in solar water heater. J. Therm. Anal. Calorim. 2020. [Google Scholar] [CrossRef]
- Diego-Ayala, U.; Carrillo, J.G. Evaluation of temperature and efficiency in relation to mass flow on a solar flat plate collector in Mexico. Renew. Energy 2016, 96, 756–764. [Google Scholar] [CrossRef]
- era. Calentador Solar ST-8-80; Technical Data Sheet; era Energía Renovable de América: Morelia, Mexico, 2018; Available online: https://www.era.energiadeamerica.mx/assets_/img/Fichas_Técnicas_ST_8.pdf (accessed on 11 April 2021). (In Spanish)
Material Properties | Copper (FEM Model) | Water (CFD Model) |
---|---|---|
Density (kg/m3) | 8930 | 997.9 |
Thermal conductivity (W/m °C) | 384 | 0.598 |
Specific heat capacity (J/kg °C) | 386 | 4183 |
Emissivity | 0.92 1 | - |
Heat loss coefficient (W/m2 °C) | 4.6 1 | - |
Viscosity (N/m2 s) | - | 0.001 |
CPC Absorber | Average Power P (W) 1 March 2020 (Late Winter) | Average Power P (W) 15 January 2021 (Early Winter) | Average Power P (W) 9 July 2020 (Summer) |
---|---|---|---|
Without fins | 61.4 | 59.2 | 62.2 |
With segmented fins | 69.9 | 69.5 | 62.8 |
With continuous fins | 76.2 | 78.5 | 63.3 |
CPC Collector without Fins | CPC Collector with Segmented Fins | Flat Plate Collector | Evacuated Tube Collector | |
---|---|---|---|---|
Copper tube, fins, fittings | $23 | $47 | $65 | - |
Steel sheet and supports | $11 | $11 | $15 | - |
Aluminum sheet | $20 | $20 | - | - |
Aluminum frame | - | - | $15 | - |
Thermal insulation | $6 | $6 | $10 | - |
Glass cover | $5 | $5 | $20 | - |
Total cost | $65 | $89 | $125 | $300 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrón-Díaz, J.E.; Flores-Johnson, E.A.; Chan-Colli, D.G.; Koh-Dzul, J.F.; Bassam, A.; Patiño-Lopez, L.D.; Carrillo, J.G. FEM-CFD Simulation and Experimental Study of Compound Parabolic Concentrator (CPC) Solar Collectors with and without Fins for Residential Applications. Appl. Sci. 2021, 11, 3704. https://doi.org/10.3390/app11083704
Barrón-Díaz JE, Flores-Johnson EA, Chan-Colli DG, Koh-Dzul JF, Bassam A, Patiño-Lopez LD, Carrillo JG. FEM-CFD Simulation and Experimental Study of Compound Parabolic Concentrator (CPC) Solar Collectors with and without Fins for Residential Applications. Applied Sciences. 2021; 11(8):3704. https://doi.org/10.3390/app11083704
Chicago/Turabian StyleBarrón-Díaz, Javier E., Emmanuel A. Flores-Johnson, Danny G. Chan-Colli, J. Francisco Koh-Dzul, Ali Bassam, Luis D. Patiño-Lopez, and Jose G. Carrillo. 2021. "FEM-CFD Simulation and Experimental Study of Compound Parabolic Concentrator (CPC) Solar Collectors with and without Fins for Residential Applications" Applied Sciences 11, no. 8: 3704. https://doi.org/10.3390/app11083704
APA StyleBarrón-Díaz, J. E., Flores-Johnson, E. A., Chan-Colli, D. G., Koh-Dzul, J. F., Bassam, A., Patiño-Lopez, L. D., & Carrillo, J. G. (2021). FEM-CFD Simulation and Experimental Study of Compound Parabolic Concentrator (CPC) Solar Collectors with and without Fins for Residential Applications. Applied Sciences, 11(8), 3704. https://doi.org/10.3390/app11083704