Comparative Assessment of the Basic Chemical Composition and Antioxidant Activity of Stevia rebaudiana Bertoni Dried Leaves, Grown in Poland, Paraguay and Brazil—Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate Composition
2.1.1. Dry Matter
2.1.2. Total Protein
2.1.3. Crude Fat
2.1.4. Total Ash
2.1.5. Dietary Fiber
2.1.6. Total and Digestible Carbohydrates
2.2. Steviol Glycosides
2.3. Vitamin C
2.4. Preparation of Methanol Extracts
2.4.1. Phenolic Compounds
2.4.2. Antioxidant Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.1.1. Dry Matter
3.1.2. Proteins
3.1.3. Crude Fat
3.1.4. Digestible Carbohydrates
3.1.5. Dietary Fiber
3.1.6. Total Ash
3.2. Steviol Glycosides
3.3. Antioxidants and antioxidant activity
3.3.1. Vitamin C
3.3.2. Total Polyphenols
3.3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dietary Guidelines Advisory Committee, Scientific Report of the 2015 Dietary Guidelines Advisory Committee. 2015. Available online: http://www.health.gov/dietaryguidelines/2015-scientific-report/ (accessed on 7 January 2016).
- Mozaffarian, D. Foods, obesity, and diabetes-are all calories created equal? Nutr. Rev. 2017, 75 (Suppl. 1), 19–31. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science—Implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, k2392. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Noncommunicable Diseases. Country Profiles 2018. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/handle/10665/274512 (accessed on 16 April 2021).
- Kinghorn, A.D. Stevia: The Genus Stevia; Taylor and Francis: New York, NY, USA, 2002. [Google Scholar]
- Abou-Arab, A.E.; Abou-Arab, A.A.; Abu-Salem, M.F. Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebaudiana Bertoni plant. Afr. J. Food Sci. 2010, 4, 269–281. Available online: https://doi.org/10.5897/AJFS.9000226 (accessed on 31 May 2010).
- Mishra, P.K.; Singh, R.; Kumar, U.; Prakash, V. Stevia Rebaudiana-A Magical Sweetener. GJBBR 2010, 5, 62–74. [Google Scholar]
- Christaki, E.; Bonos, E.; Giannenas, I.; Karatzia, M.A.; Florou-Paneri, P. Stevia rebaudianas a novel source of food additives. J. Food Nutr. Res. 2013, 52, 195–202. [Google Scholar]
- Abou-Arab, E.A.; Abu-Salem, F.M. Evaluation of bioactive compounds of Stevia rebaudiana leaves and callus. Afr. J. Food Sci. 2010, 4, 627–634. Available online: http://www.academicjournals.org/ajfs (accessed on 7 October 2010). [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Człapka-Matyasik, M. Dietary characteristics of stevia–current state of knowledge. Bromat. Chem. Toksykol. 2015, 48, 11–18. [Google Scholar]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef]
- Marcinek, K.; Krejpcio, Z. Stevia rebaudiana bertoni–chemical composition and functional propertie. Acta Sci. Pol. Technol. Aliment. 2015, 14, 145–152. [Google Scholar] [CrossRef]
- McGarvey, B.D.; Attygalle, A.B.; Starratt, A.N.; Xiang, B.; Schroeder, F.C.; Brandle, J.E.; Meinwald, J. New non-glycosidic diterpenes from the leaves of Stevia rebaudiana. J. Nat. Prod. 2003, 66, 1395–1398. [Google Scholar] [CrossRef]
- Tadhani, M.B.; Patel, V.H.; Subhash, R. In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J. Food Compos. Anal. 2007, 20, 323–329. [Google Scholar] [CrossRef]
- Abudula, R.; Jeppesen, P.B.; Rolfsen, S.E.D.; Xiao, J.; Kjeld, H. Rebaudioside A potently stimulates insulin secretion from isolated mouse islets: Studies on the dose-, glucose-, and calcium-dependency. Metabolism 2004, 53, 1378–1381. [Google Scholar] [CrossRef]
- Chatsudthipong, V.; Muanprasat, C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol. Ther. 2009, 121, 41–54. [Google Scholar] [CrossRef]
- Kinghorn, A.D.; Soejarto, D.D. Discovery of terpenoid and phenolic sweeteners from plants. Pure Appl. Chem. 2002, 74, 1169–1179. [Google Scholar] [CrossRef]
- Mandan, S.; Ahmad, S.; Singh, G.N.; Kohli, K.; Kumar, Y.; Singh, R.; Garg, M. Stevia rebaudiana (Bert.) Bertoni—A review. IJNPR 2010, 1, 267–286. Available online: http://nopr.niscair.res.in/handle/123456789/10287 (accessed on 7 September 2010).
- Toskulkao, C.; Suntheerawattananon, M.; Piyachaturawat, P. Inhibitory effect of steviol, a metabolite of stevioside, on glucose absorption in everted hamster intestine in vitro. Toxciol. Lett. 1995, 80, 153–159. [Google Scholar] [CrossRef]
- Toskulkao, C.; Suntheerawattananon, M.; Wanichanon, C.; Saitongdee, P.; Suttajit, M. Effect of stevioside and steviol on intestinal glucose absorption in hamsters. J. Nutr. Sci. Vitaminol. 1995, 4, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasukawa, K.; Kitanaka, S.; Seo, S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol. Pharm. Bull. 2002, 25, 1488–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, P.; Xu, D.Y.; Liu, J.Ch.; Chen, J.Y.; Tomlinson, B.; Huang, W.P.; Cheng, J.T. The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rat. Life Sci. 1998, 63, 1679–1684. [Google Scholar] [CrossRef]
- Chan, P.; Tomlinson, B.; Chen, Y.J.; Liu, J.Ch.; Hsieh, H.M.; Cheng, J.T. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br. J. Clin. Pharmacol. 2000, 50, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, M.H.; Chan, P.; Sue, Y.M.; Liu, J.C.; Liang, T.H.; Huang, T.Y. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: A two-year, randomized, placebo-controlled study. Clin. Ther. 2003, 25, 2797–2808. [Google Scholar] [CrossRef] [Green Version]
- Maki, K.C.; Curry, L.L.; Reeves, M.S.; Toth, P.D.; McKenney, J.M.; Farmer, M.V.; Schwartz, S.L.; Lubin, B.C.; Boileau, A.C.; Dicklin, M.R.; et al. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem. Toxicol. 2008, 46, 47–53. [Google Scholar] [CrossRef]
- Thomas, J.E.; Glade, M.J. Stevia: it’s not just about calories. Open Obes. J. 2010, 2, 101–109. [Google Scholar] [CrossRef]
- Boonkaewwan, C.; Toskulkao, C.; Vongsakul, M. Anti-inflammatory and immunomodulatory activities of stevioside and its metabolite steviol on THP-1 cells. J. Agric. Food Chem. 2006, 54, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki, Y.; Murakami-Nakai, C.; Kuriyama, I. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005, 77, 2127–2140. [Google Scholar] [CrossRef] [PubMed]
- Sehar, I.; Kaul, A.; Bani, S.; Pal, H.C.; Saxena, A.K. Immune up regulatory response of a non-caloric natural sweetener, stevioside. Chem. Biol. Interact. 2008, 173, 115–121. [Google Scholar] [CrossRef]
- Kalicka, D.R.; Znamirowski, A.; Buniowska, M.; Jose’ Esteve Ma´s, M.; Frigola Canoves, F. Effect of stevia addition on selected properties of yoghurt during refrigerated storage. Pol. J. Natur. Sc. 2017, 32, 323–334. [Google Scholar]
- Urban, J.D.; Carakostas, M.C.; Brusick, D.J. Steviol glycoside safety: Is the genotoxicity database suffi cient? Food Chem. Toxicol. 2013, 51, 386–390. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 1131/2011 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council with regard to steviol glycosides. Off. J. 2011, L 295, 205–211. [Google Scholar]
- COMMISSION REGULATION (EU) 2016/1814 of 13 October 2016 amending the Annex to Regulation (EU) No 231/2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards specifications for steviol glycosides (E 960). Available online: http://data.europa.eu/eli/reg/2016/1814/oj (accessed on 9 March 2021).
- Decision by local administrative court (VG) München, 13.05.2004, M 4 K 03.4528.
- Decision by local administrative court (VG) München, 26.09.2011, M 18 K 11.1445.
- European Commission. Commission Regulation (EU) 2016/441 Amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as regards the use of Steviol glycosides (E 960) as a sweetener in mustard. Off. J. 2016, L 78, 47. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Publisher: Springer Gaithersburg, MD, USA, 2006. [Google Scholar]
- Metzger, L.E.; Nielsen, S.S. Nutrition labeling in food analysis. In Food Analysis, 5th ed.; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 35–43. [Google Scholar]
- Zimmermann, B.F. Tandem mass spectrometric fragmentation patterns of known and new steviol glycosides with structure proposals. Rapid Commun. Mass Spectrom. 2011, 25, 1575–1582. [Google Scholar] [CrossRef]
- Geuns, J.M.C. Validation of steviol glycoside analysis by an external standard. Adv. Food Process. Technol. 2018. [Google Scholar] [CrossRef]
- PN-A-04019:1998. Food Products–Determination of Vitamin C; Polish Committee for Standardization: Warsaw, Poland, 1998. [Google Scholar]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swain, T.; Hillis, W.E. The phenolic constituents of prunus domestica (L.). The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Goyal, S.K.; Samsher, G.R.K.; Goyal, R.K. Stevia (Stevia rebaudiana) a bio-sweetener: A review. Int. J. Food Sci. Nutr. 2010, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Savita, S.M.; Sheela, K.; Sunanda, S.; Shankar, A.G.; Ramakrishna, P. Stevia rebaudiana–a functional component for food industry. J. Hum. Ecol. 2004, 15, 261–264. [Google Scholar] [CrossRef]
- Kaushik, R.; Pradeep, N.; Vamshi, V.; Geetha, M.; Usha, A. Nutrient composition of cultivated Stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. J. Food Sci. Technol. 2010, 47, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Serio, L. La Stevia rebaudiana, une alternative au sucre. Phytothérapie 2010, 8, 26–32. [Google Scholar] [CrossRef]
- Tadhani, M.; Subhash, R. Preliminary studies on Stevia rebaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. J. Med. Sci. 2006, 6, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Muhammed, M.; Muhammed, U.D.; Sher, M.; Habib, A.; Iqbal, A. In vitro clonal propagation and biochemical analysis of field established Stevia rebaudiana Bertoni. Pak. J. Bot. 2007, 39, 2467–2474. [Google Scholar]
- Atteh, J.O.; Onagbesan, O.M.; Tona, K.; Decuypere, E.; Geuns, J.M.; Buyse, J. Evaluation of supplementary stevia (Stevia rebaudiana, Bertoni) leaves and stevioside in broiler diets: Effects on feed intake, nutrient metabolism, blood parameters and growth performance. J. Anim. Physiol. Anim. Nutr. 2008, 92, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, N.; Naika, M.; Khanum, F.; Kaul, V.K. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. JDC 2013, 27, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Braz De Oliveira, A.; Goncalves, R.A.C.; Chierrito, T.P.C.; Souza, L.; Gorin, P.A.J.; Sassaki, G.L.; Iacomini, M. Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana Bertoni. Food Chem. 2011, 129, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Geuns, J.M.C. Stevioside. Phytochemistry 2003, 64, 913–921. [Google Scholar] [CrossRef]
- Gardana, C.; Scaglianti, M.; Simonetti, P. Evaluation of steviol and its glycosides in Stevia rebaudiana leaves and commercial sweetener by ultra-high-performance liquid chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Kolanowski, W. Steviol glycosides-properties and use in foods. Brom. Chem. Toksykol. 2013, 46, 140–150. [Google Scholar]
- Kim, I.; Yang, M.; Lee, O.; Kang, S. The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extracts. Food Sci. Technol. 2011, 44, 1328–1332. [Google Scholar] [CrossRef]
- Muanda, F.N.; Soulimani, R.; Diop, B.; Dicko, A. Study on chemical composition and biological activities of essential oil and extracts from Stevia rebaudiana Bertoni leaves. Food Sci. Technol. 2011, 44, 1865–1872. [Google Scholar] [CrossRef]
- Shukla, S.; Mehta, A.; Bajpai, V.K.; Shukla, S. In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food Chem. Toxicol. 2009, 47, 2338–2343. [Google Scholar] [CrossRef]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S. Efficient free radical scavenging activity of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorus leaves through DPPH (2, 2-diphenyl-1-picrylhydrazyl). Int. J. Phytomedicine 2010, 2, 231–239. [Google Scholar] [CrossRef]
- Shukla, S.; Mehta, A.; Mehta, P.; Bajpai, V. Antioxidant ability and total phenolic content of aqueous leaf extract of Stevia rebaudiana Bert. Exp.Toxicol. Pathol. 2012, 64, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.G. Antioxidant activity of Stevia (Stevia rebaudiana L.) leaf powder and a commercial stevioside powder. J. Food Pharm. Sci. 2014, 2, 32–38. [Google Scholar]
- Cybul, M.; Nowak, R. Review of the methods applied to measuring of antioxidant activity of plant extracts. Herba Pol. 2008, 54, 68–78. [Google Scholar]
- Brandle, J.E.; Strratt, A.N.; Gijzen, M. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can. J. Plant. Sci. 1998, 78, 527–536. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Stevia rebaudiana | ||
---|---|---|---|
Polish | Paraguayan | Brazilian | |
Dry matter (g/100 g) | 99.6 ± 0.06 a | 99.4 ± 0.27 a | 99.3 ± 0.05 a |
Protein (g/100 g DM) | 11.2 ± 0.97 a | 17.1 ± 1.85 b | 15.5 ± 0.51 b |
Fat (g/100 g DM) | 3.33 ± 0.10 b | 1.73 ± 0.01 a | 4.90 ± 0.32 c |
Digestible carbohydrates (g/100 g DM) | 61.7 ± 0.67 b | 60.4 ± 1.52 b | 55.0 ± 0.39 a |
Dietary fiber (g/100 g DM) | 15.7 ± 0.18 c | 12.3 ± 0.3 a | 14.1 ± 0.22 b |
Total ash (g/100 g DM) | 7.65 ± 0.40 a | 7.85 ± 0.03 b | 9.78 ± 0.05 c |
Ingredient | Stevia rebaudiana | ||
---|---|---|---|
Polish | Paraguayan | Brazilian | |
Rubusoside | 1.13 ± 0.11 a | 0.53 ± 0.06 b | 1.18 ± 0.01 a |
Steviolbioside | n.q. | n.q. | n.q. |
Dulcoside A | 0.31 ± 0.04 a | 0.22 ± 0.01 b | 0.25 ± 0.02 ab |
Rebaudioside B | n.q. | n.q. | n.q. |
Stevioside | 9.54 ± 0.43 b | 5.94 ± 0.48 a | 5.82 ± 0.13 a |
Rebaudioside C | 0.28 ± 0.01 b | 0.22 ± 0.03 a | 0.29 ± 0.01 b |
Rebaudioside F | n.q. | n.q. | n.q. |
Rebaudioside A | 4.05 ± 0.03 b | 3.01 ± 0.51 a | 4.35 ± 0.03 b |
Rebaudioside E | 2.18 ± 0.10 a | 0.64 ± 0.26 b | 1.13 ± 0.02 a |
Rebaudioside D | 4.64 ± 0.26 c | 2.10 ± 0.12 b | 0.47 ± 0.03 a |
∑ Steviol Glycosides | 22.14 ± 0.10 b | 12.67 ± 0.29 a | 13.5 ± 0.10 a |
Ingredient | Stevia rebaudiana | ||
---|---|---|---|
Polish | Paraguayan | Brazilian | |
Vitamin C (mg/100 g DM) | 29.9 ± 0.53 c | 4.55 ± 0.01 a | 7.58 ± 0.21 b |
Total polyphenols (mg GAE */g DM) | 89.96 ± 1.60 a | 89.31 ± 1.65 a | 90.95 ± 6.93 a |
Total polyphenols (mg CE **/g DM) | 99.71 ± 1.77 a | 98.98 ± 1.83 a | 100.8 ± 7.68 a |
Antioxidant activity (µmol Trolox/g DM) | 152.4 ± 2.36 a | 163.7 ± 2.00 b | 160.3 ± 1.56 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszczyńska, T.; Piekło, B.; Kopeć, A.; Zimmermann, B.F. Comparative Assessment of the Basic Chemical Composition and Antioxidant Activity of Stevia rebaudiana Bertoni Dried Leaves, Grown in Poland, Paraguay and Brazil—Preliminary Results. Appl. Sci. 2021, 11, 3634. https://doi.org/10.3390/app11083634
Leszczyńska T, Piekło B, Kopeć A, Zimmermann BF. Comparative Assessment of the Basic Chemical Composition and Antioxidant Activity of Stevia rebaudiana Bertoni Dried Leaves, Grown in Poland, Paraguay and Brazil—Preliminary Results. Applied Sciences. 2021; 11(8):3634. https://doi.org/10.3390/app11083634
Chicago/Turabian StyleLeszczyńska, Teresa, Barbara Piekło, Aneta Kopeć, and Benno F. Zimmermann. 2021. "Comparative Assessment of the Basic Chemical Composition and Antioxidant Activity of Stevia rebaudiana Bertoni Dried Leaves, Grown in Poland, Paraguay and Brazil—Preliminary Results" Applied Sciences 11, no. 8: 3634. https://doi.org/10.3390/app11083634
APA StyleLeszczyńska, T., Piekło, B., Kopeć, A., & Zimmermann, B. F. (2021). Comparative Assessment of the Basic Chemical Composition and Antioxidant Activity of Stevia rebaudiana Bertoni Dried Leaves, Grown in Poland, Paraguay and Brazil—Preliminary Results. Applied Sciences, 11(8), 3634. https://doi.org/10.3390/app11083634