Quantum Circuit Design of Toom 3-Way Multiplication
Abstract
:1. Introduction
- We design the quantum circuit for Toom-3 multiplication which minimizes the division circuit from four to only one by employing the classical sequence proposed by Bodrato [25].
- We propose to use a constant multiplication circuit to perform the division by 3 operation. In particular, the division is treated as a constant multiplication by reciprocal.
- We analyze the complexity of the circuit, which shows that the proposed quantum circuit for Toom-3 still has a competitive advantage in terms of Toffoli depth and qubit count.
2. Related Work
2.1. Multiplication Methods in Quantum Computation
2.2. Toom–Cook Multiplication Method
2.2.1. General Toom–Cook Multiplication
2.2.2. Toom 3-Way Multiplication
3. Proposed Method
3.1. Efficient Scheduling
3.2. Quantum Circuit for Toom 3-Way Multiplication
Circuit Components
4. Cost Analysis
4.1. Gate Count
4.2. Space-Time Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, Y. Quantum arithmetic circuits: A survey. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2009, 92, 1276–1283. [Google Scholar] [CrossRef]
- Vedral, V.; Barenco, A.; Ekert, A. Quantum networks for elementary arithmetic operations. Phys. Rev. A 1996, 54, 147. [Google Scholar] [CrossRef] [Green Version]
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th annual symposium on foundations of computer science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Rines, R.; Chuang, I. High performance quantum modular multipliers. arXiv 2018, arXiv:1801.01081. [Google Scholar]
- Markov, I.L.; Saeedi, M. Constant-optimized quantum circuits for modular multiplication and exponentiation. arXiv 2012, arXiv:1202.6614. [Google Scholar]
- Beckman, D.; Chari, A.N.; Devabhaktuni, S.; Preskill, J. Efficient networks for quantum factoring. Phys. Rev. A 1996, 54, 1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauregard, S. Circuit for Shor’s algorithm using 2n + 3 qubits. arXiv 2002, arXiv:quant-ph/0205095. [Google Scholar]
- Parent, A.; Roetteler, M.; Mosca, M. Improved reversible and quantum circuits for Karatsuba-based integer multiplication. arXiv 2017, arXiv:1706.03419. [Google Scholar]
- Childs, A.M.; Schulman, L.J.; Vazirani, U.V. Quantum algorithms for hidden nonlinear structures. In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), Providence, RI, USA, 21–23 October 2007; pp. 395–404. [Google Scholar]
- Cleve, R.; Watrous, J. Fast parallel circuits for the quantum Fourier transform. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November 2000; pp. 526–536. [Google Scholar]
- Dutta, S.; Bhattacharjee, D.; Chattopadhyay, A. Quantum circuits for Toom-Cook multiplication. Phys. Rev. A 2018, 98, 012311. [Google Scholar] [CrossRef] [Green Version]
- Amy, M. Algorithms for the optimization of quantum circuits. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2013. [Google Scholar]
- Kowada, L.; Portugal, R.; Figueiredo, C.D. Reversible Karatsuba’s Algorithm. J. Univers. Comput. Sci. 2006, 12, 499–511. [Google Scholar]
- Karatsuba, A.A.; Ofman, Y.P. Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk. Russ. Acad. Sci. 1962, 145, 293–294. [Google Scholar]
- Toom, A.L. The complexity of a scheme of functional elements realizing the multiplication of integers. Sov. Math. Dokl. 1963, 3, 714–716. [Google Scholar]
- Cook, S.A.; Aanderaa, S.O. On the minimum computation time of functions. Trans. Am. Math. Soc. 1969, 142, 291–314. [Google Scholar] [CrossRef]
- Bennett, C.H. Time/space trade-offs for reversible computation. SIAM J. Comput. 1989, 18, 766–776. [Google Scholar] [CrossRef]
- Gu, Z.; Li, S. A Division-Free Toom–Cook Multiplication-Based Montgomery Modular Multiplication. IEEE Trans. Circuits Syst. II Express Briefs 2018, 66, 1401–1405. [Google Scholar] [CrossRef]
- Granlund, T. The GMP Development Team. In The GNU Multiple Precision Arithmetic Library Manual; The GMP Development Team: Boston, MA, USA, 2014. [Google Scholar]
- Khosropour, A.; Aghababa, H.; Forouzandeh, B. Quantum division circuit based on restoring division algorithm. In Proceedings of the 2011 Eighth International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 11–13 April 2011; pp. 1037–1040. [Google Scholar]
- Dibbo, S.V.; Babu, H.M.H.; Jamal, L. An efficient design technique of a quantum divider circuit. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2102–2105. [Google Scholar]
- Thapliyal, H.; Munoz-Coreas, E.; Varun, T.; Humble, T. Quantum circuit designs of integer division optimizing T-count and T-depth. IEEE Trans. Emerg. Top. Comput. 2019. [Google Scholar] [CrossRef] [Green Version]
- Jamal, L.; Babu, H.M.H. Efficient approaches to design a reversible floating point divider. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 3004–3007. [Google Scholar]
- Pavlidis, A.; Gizopoulos, D. Fast Quantum Modular Exponentiation Architecture for Shor’s Factoring Algorithm. Quantum Inform. Comput. 2014, 14, 649–682. [Google Scholar] [CrossRef]
- Bodrato, M. Towards optimal Toom-Cook multiplication for univariate and multivariate polynomials in characteristic 2 and 0. In International Workshop on the Arithmetic of Finite Fields; Springer: Berlin/Heidelberg, Germany, 2007; pp. 116–133. [Google Scholar]
- Proos, J.; Zalka, C. Shor’s discrete logarithm quantum algorithm for elliptic curves. arXiv Prepr. 2003, arXiv:quant-ph/0301141. [Google Scholar]
- Roetteler, M.; Naehrig, M.; Svore, K.M.; Lauter, K. Quantum resource estimates for computing elliptic curve discrete logarithms. In International Conference on the Theory and Application of Cryptology and Information Security; Springer: Berlin/Heidelberg, Germany, 2017; pp. 241–270. [Google Scholar]
- Häner, T.; Jaques, S.; Naehrig, M.; Roetteler, M.; Soeken, M. Improved quantum circuits for elliptic curve discrete logarithms. In International Conference on Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany, 2020; pp. 425–444. [Google Scholar]
- Cuccaro, S.A.; Draper, T.G.; Kutin, S.A.; Moulton, D.P. A new quantum ripple-carry addition circuit. arXiv 2004, arXiv:quant-ph/0410184. [Google Scholar]
- Van Hoof, I. Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count. arXiv 2019, arXiv:1910.02849. [Google Scholar]
- Bodrato, M.; Zanoni, A. What About Toom-Cook Matrices Optimality; Centro “Vito Volterra” Università di Roma Tor Vergata: Roma, Italy, 2006. [Google Scholar]
- Knuth, D.E. Art of Computer Programming, Volume 2: Seminumerical Algorithms; Addison-Wesley Professional: Boston, MA, USA, 2014. [Google Scholar]
- Chung, J.; Hasan, M.A. Asymmetric squaring formulae. In Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH’07), Montpellier, France, 25–27 June 2007; pp. 113–122. [Google Scholar]
- Gyongyosi, L.; Imre, S. Circuit depth reduction for gate-model quantum computers. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Preskill, J. Lecture Notes for Ph219/CS219: Quantum Information and Computation Chapter 5; California Institute of Technology: Pasadena, CA, USA, 2015. [Google Scholar]
- Takahashi, Y.; Tani, S.; Kunihiro, N. Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 2010, 10, 872–890. [Google Scholar]
- Draper, T.G. Addition on a quantum computer. arXiv Prepr. 2000, arXiv:quant-ph/0008033. [Google Scholar]
- Žnidarič, M.; Giraud, O.; Georgeot, B. Optimal number of controlled-NOT gates to generate a three-qubit state. Phys. Rev. A 2008, 77, 032320. [Google Scholar] [CrossRef] [Green Version]
- Chao, R.; Reichardt, B.W. Fault-tolerant quantum computation with few qubits. NPJ Quantum Inf. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Alverson, R. Integer division using reciprocals. IEEE Symp. Comput. Arith. 1991, 1, 186–190. [Google Scholar]
- Shende, V.V.; Markov, I.L. On the CNOT-cost of TOFFOLI gates. arXiv 2008, arXiv:0803.2316. [Google Scholar]
- Jang, K.; Choi, S.; Kwon, H.; Kim, H.; Park, J.; Seo, H. Grover on Korean Block Ciphers. Appl. Sci. 2020, 10, 6407. [Google Scholar] [CrossRef]
- Abdessaied, N.; Amy, M.; Soeken, M.; Drechsler, R. Technology mapping of reversible circuits to Clifford+ T quantum circuits. In Proceedings of the 2016 IEEE 46th international symposium on multiple-valued logic (ISMVL), Sapporo, Japan, 18–20 May 2016; pp. 150–155. [Google Scholar]
- Královič, R. Time and space complexity of reversible pebbling. RAIRO-Theor. Inform. Appl. Inform. Théorique Appl. 2004, 38, 137–161. [Google Scholar] [CrossRef]
- Ding, J.; Li, S.; Gu, Z. High-speed ECC processor over NIST prime fields applied with Toom–Cook multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 1003–1016. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larasati, H.T.; Awaludin, A.M.; Ji, J.; Kim, H. Quantum Circuit Design of Toom 3-Way Multiplication. Appl. Sci. 2021, 11, 3752. https://doi.org/10.3390/app11093752
Larasati HT, Awaludin AM, Ji J, Kim H. Quantum Circuit Design of Toom 3-Way Multiplication. Applied Sciences. 2021; 11(9):3752. https://doi.org/10.3390/app11093752
Chicago/Turabian StyleLarasati, Harashta Tatimma, Asep Muhamad Awaludin, Janghyun Ji, and Howon Kim. 2021. "Quantum Circuit Design of Toom 3-Way Multiplication" Applied Sciences 11, no. 9: 3752. https://doi.org/10.3390/app11093752
APA StyleLarasati, H. T., Awaludin, A. M., Ji, J., & Kim, H. (2021). Quantum Circuit Design of Toom 3-Way Multiplication. Applied Sciences, 11(9), 3752. https://doi.org/10.3390/app11093752