High-Speed Dynamic Projection Mapping onto Human Arm with Realistic Skin Deformation †
Abstract
:1. Introduction
2. Related Work
2.1. Non-Rigid Registration
2.2. Learned Human Body Model
2.3. 3D Human Surface Estimation
3. Proposed Projection Mapping System
3.1. Overview
3.2. High-Speed Motion Tracking
3.3. High-Speed Rendering
3.4. High-Speed Projection
4. Experiments
4.1. Hardware Setup
4.2. Model Preparation
4.3. Data Preparation
4.4. Results
5. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bimber, O.; Raskar, R. Spatial Augmented Reality: Merging Real and Virtual Worlds; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Mine, M.R.; van Baar, J.; Grundhofer, A.; Rose, D.; Yang, B. Projection-Based Augmented Reality in Disney Theme Parks. Computer 2012, 45, 32–40. [Google Scholar] [CrossRef]
- Raskar, R.; Welch, G.; Low, K.L.; Bandyopadhyay, D. Shader Lamps: Animating Real Objects With Image-Based Illumination. In Proceedings of the 12th Eurographics Workshop on Rendering Techniques, London, UK, 25–27 June 2001; pp. 89–102. [Google Scholar]
- Siegl, C.; Colaianni, M.; Thies, L.; Thies, J.; Zollhöfer, M.; Izadi, S.; Stamminger, M.; Bauer, F. Real-Time Pixel Luminance Optimization for Dynamic Multi-Projection Mapping. ACM Trans. Graph. 2015, 34, 1–11. [Google Scholar] [CrossRef]
- Narita, G.; Watanabe, Y.; Ishikawa, M. Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, L.; Watanabe, Y.; Ishikawa, M. MIDAS Projection: Markerless and Modelless Dynamic Projection Mapping for Material Representation. ACM Trans. Graph. 2018, 37, 1–12. [Google Scholar] [CrossRef]
- Nomoto, T.; Li, W.; Peng, H.L.; Watanabe, Y. Dynamic Projection Mapping with Networked Multi-Projectors Based on Pixel-Parallel Intensity Control. In Proceedings of the SIGGRAPH Asia 2020 Emerging Technologies (SA ’20), Online, 4–13 December 2020. Virtual Event Republic of Korea. [Google Scholar]
- Bermano, A.H.; Billeter, M.; Iwai, D.; Grundhöfer, A. Makeup Lamps: Live Augmentation of Human Faces via Projection. Comput. Graph. Forum 2017, 36, 311–323. [Google Scholar] [CrossRef]
- Siegl, C.; Lange, V.; Stamminger, M.; Bauer, F.; Thies, J. FaceForge: Markerless Non-Rigid Face Multi-Projection Mapping. IEEE Trans. Vis. Comput. Graph. 2017, 23, 2440–2446. [Google Scholar] [CrossRef] [PubMed]
- Ink Mapping: Video Mapping Projection on Tattoos, by Oskar & Gaspar. Available online: https://vimeo.com/143296099 (accessed on 7 March 2021).
- Pourjafarian, N.; Koelle, M.; Fruchard, B.; Mavali, S.; Klamka, K.; Groeger, D.; Strohmeier, P.; Steimle, J. BodyStylus: Freehand On-Body Design and Fabrication of Epidermal Interfaces. In Proceedings of the 2021 ACM Conference on Human Factors in Computing Systems (CHI ’21), Yokohama, Japan, 8–13 May 2021. [Google Scholar]
- Xiao, R.; Cao, T.; Guo, N.; Zhuo, J.; Zhang, Y.; Harrison, C. LumiWatch: On-Arm Projected Graphics and Touch Input. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18), Montreal, QC, Canada, 21–26 April 2018; pp. 1–11. [Google Scholar]
- Harrison, C.; Benko, H.; Wilson, A.D. OmniTouch: Wearable Multitouch Interaction Everywhere. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11), Santa Barbara, CA, USA, 16–19 October 2011; pp. 441–450. [Google Scholar]
- Sodhi, R.; Benko, H.; Wilson, A. LightGuide: Projected Visualizations for Hand Movement Guidance. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12), Austin, TX, USA, 5–10 May 2012; pp. 179–188. [Google Scholar]
- Harrison, C.; Tan, D.; Morris, D. Skinput: Appropriating the Body as an Input Surface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’10), Atlanta, GA, USA, 10–15 April 2010; pp. 453–462. [Google Scholar]
- Gannon, M.; Grossman, T.; Fitzmaurice, G. ExoSkin: On-Body Fabrication. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16), San Jose, CA, USA, 7–12 May 2016; pp. 5996–6007. [Google Scholar]
- Gannon, M.; Grossman, T.; Fitzmaurice, G. Tactum: A Skin-Centric Approach to Digital Design and Fabrication. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15), Seoul, Korea, 18–23 April 2015; pp. 1779–1788. [Google Scholar]
- Hoang, T.; Reinoso, M.; Joukhadar, Z.; Vetere, F.; Kelly, D. Augmented Studio: Projection Mapping on Moving Body for Physiotherapy Education. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17), Denver, CO, USA, 6–11 May 2017; pp. 1419–1430. [Google Scholar]
- Ni, T.; Karlson, A.K.; Wigdor, D. AnatOnMe: Facilitating Doctor-Patient Communication Using a Projection-Based Handheld Device. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’11), Vancouver, BC, Canada, 7–12 May 2011; pp. 3333–3342. [Google Scholar]
- Ng, A.; Lepinski, J.; Wigdor, D.; Sanders, S.; Dietz, P. Designing for Low-Latency Direct-Touch Input. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST’12), Vancouver, BC, Canada, 7–12 May 2012; pp. 453–464. [Google Scholar]
- Peng, H.L.; Watanabe, Y. High-Speed Human Arm Projection Mapping with Skin Deformation. In Proceedings of the SIGGRAPH Asia 2020 Emerging Technologies (SA ’20), Online, 4–13 December 2020. Virtual Event Republic of Korea. [Google Scholar]
- Sorkine, O.; Alexa, M. As-Rigid-as-Possible Surface Modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07), Barcelona, Spain, 4–6 July 2007; pp. 109–116. [Google Scholar]
- Sumner, R.W.; Schmid, J.; Pauly, M. Embedded Deformation for Shape Manipulation. ACM Trans. Graph. 2007, 26, 80-es. [Google Scholar] [CrossRef]
- Szeliski, R.; Lavallee, S. Matching 3D anatomical surfaces with non-rigid deformations using octree-splines. In Proceedings of the IEEE Workshop on Biomedical Image Analysis, Seattle, WA, USA, 24–25 June 1994; pp. 144–153. [Google Scholar]
- Newcombe, R.A.; Fox, D.; Seitz, S.M. DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 343–352. [Google Scholar]
- Zollhöfer, M.; Nießner, M.; Izadi, S.; Rehmann, C.; Zach, C.; Fisher, M.; Wu, C.; Fitzgibbon, A.; Loop, C.; Theobalt, C.; et al. Real-Time Non-Rigid Reconstruction Using an RGB-D Camera. ACM Trans. Graph. 2014, 33, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guo, X. Topology-Change-Aware Volumetric Fusion for Dynamic Scene Reconstruction. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; pp. 258–274. [Google Scholar]
- Guo, K.; Xu, F.; Wang, Y.; Liu, Y.; Dai, Q. Robust Non-rigid Motion Tracking and Surface Reconstruction Using L0 Regularization. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3083–3091. [Google Scholar]
- Li, W.; Zhao, S.; Xiao, X.; Hahn, J.K. Robust Template-Based Non-Rigid Motion Tracking Using Local Coordinate Regularization. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 390–399. [Google Scholar]
- Gao, W.; Tedrake, R. SurfelWarp: Efficient Non-Volumetric Single View Dynamic Reconstruction. In Proceedings of the Robotics: Science and Systems (RSS ’18), Pittsburgh, PA, USA, 26–30 June 2018. [Google Scholar]
- Wei, X.; Zhang, P.; Chai, J. Accurate Realtime Full-Body Motion Capture Using a Single Depth Camera. ACM Trans. Graph. 2012, 31, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Le, B.H.; Deng, Z. Smooth Skinning Decomposition with Rigid Bones. ACM Trans. Graph. 2012, 31. [Google Scholar] [CrossRef]
- Kavan, L.; Collins, S.; O’Sullivan, C. Automatic Linearization of Nonlinear Skinning. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games (I3D ’09), Boston, MA, USA, 27 February–1 March 2009; pp. 49–56. [Google Scholar]
- Lewis, J.P.; Cordner, M.; Fong, N. Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00), New Orleans, LA, USA, 23–28 July 2000; pp. 165–172. [Google Scholar]
- Kurihara, T.; Miyata, N. Modeling Deformable Human Hands from Medical Images. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’04), Grenoble, France, 27–29 August 2004; pp. 355–363. [Google Scholar]
- Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. SCAPE: Shape Completion and Animation of People. ACM Trans. Graph. 2005, 24, 408–416. [Google Scholar] [CrossRef]
- Hirshberg, D.; Loper, M.; Rachlin, E.; Black, M. Coregistration: Simultaneous alignment and modeling of articulated 3D shape. In European Conference on Computer Vision (ECCV); LNCS 7577, Part IV; Springer: Berlin/Heidelberg, Germany, 2012; pp. 242–255. [Google Scholar]
- Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. 2015, 34. [Google Scholar] [CrossRef]
- Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; pp. 561–578. [Google Scholar]
- Lassner, C.; Romero, J.; Kiefel, M.; Bogo, F.; Black, M.J.; Gehler, P.V. Unite the People: Closing the Loop Between 3D and 2D Human Representations. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4704–4713. [Google Scholar]
- Joo, H.; Simon, T.; Sheikh, Y. Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8320–8329. [Google Scholar]
- Kanazawa, A.; Black, M.J.; Jacobs, D.W.; Malik, J. End-to-End Recovery of Human Shape and Pose. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7122–7131. [Google Scholar]
- Pavlakos, G.; Zhu, L.; Zhou, X.; Daniilidis, K. Learning to Estimate 3D Human Pose and Shape from a Single Color Image. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 459–468. [Google Scholar]
- Güler, R.A.; Neverova, N.; Kokkinos, I. DensePose: Dense Human Pose Estimation in the Wild. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7297–7306. [Google Scholar]
- Wei, L.; Huang, Q.; Ceylan, D.; Vouga, E.; Li, H. Dense Human Body Correspondences Using Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1544–1553. [Google Scholar]
- Yao, P.; Fang, Z.; Wu, F.; Feng, Y.; Li, J. DenseBody: Directly Regressing Dense 3D Human Pose and Shape From a Single Color Image. arXiv 2019, arXiv:1903.10153. [Google Scholar]
- OptiTrack - Motion Capture Systems. Available online: https://optitrack.com/ (accessed on 18 March 2021).
- Vicon | Award Winning Motion Capture Systems. Available online: https://www.vicon.com/ (accessed on 18 March 2021).
- Murai, A.; Hong, Q.Y.; Yamane, K.; Hodgins, J.K. Dynamic Skin Deformation Simulation Using Musculoskeletal Model and Soft Tissue Dynamics. Comput. Vis. Media 2016, 3, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Narita, G.; Tatsuno, S.; Yuasa, T.; Sumino, K.; Ishikawa, M. High-speed 8-bit Image Projector at 1000 fps with 3 ms Delay. In Proceedings of the International Display Workshops IDW ’15, Otsu, Japan, 9–11 December 2015; pp. 1064–1065. [Google Scholar]
- Panasonic Showcases New Video Technologies and Industry Solutions at InfoComm 2017. Available online: https://news.panasonic.com/global/topics/2017/48029.html (accessed on 15 March 2021).
- Watanabe, Y.; Ishikawa, M. High-Speed and High-Brightness Color Single-Chip DLP Projector Using High-Power LED-Based Light Sources. IDW 2019, 19, 1350–1352. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SMPL. Available online: https://smpl.is.tue.mpg.de/ (accessed on 31 March 2021).
- blender.org—Home of the Blender Project—Free and Open 3D Creation Software. Available online: https://www.blender.org/ (accessed on 17 March 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.-L.; Watanabe, Y. High-Speed Dynamic Projection Mapping onto Human Arm with Realistic Skin Deformation. Appl. Sci. 2021, 11, 3753. https://doi.org/10.3390/app11093753
Peng H-L, Watanabe Y. High-Speed Dynamic Projection Mapping onto Human Arm with Realistic Skin Deformation. Applied Sciences. 2021; 11(9):3753. https://doi.org/10.3390/app11093753
Chicago/Turabian StylePeng, Hao-Lun, and Yoshihiro Watanabe. 2021. "High-Speed Dynamic Projection Mapping onto Human Arm with Realistic Skin Deformation" Applied Sciences 11, no. 9: 3753. https://doi.org/10.3390/app11093753
APA StylePeng, H. -L., & Watanabe, Y. (2021). High-Speed Dynamic Projection Mapping onto Human Arm with Realistic Skin Deformation. Applied Sciences, 11(9), 3753. https://doi.org/10.3390/app11093753