The Feature Extraction through Wavelet Coefficients of Metal Friction Noise for Adhesive and Abrasive Wear Monitoring
Abstract
:Featured Application
Abstract
1. Introduction
2. Wavelet Transform for Sounds from Frictional Contacts
2.1. Adhesive and Abrasive Wears
2.2. Haar Wavelet Coefficient and PSNR
2.3. Specimen and Experimental Setting
3. Wavelet Coefficient and Feature Extraction
3.1. Effect of Wears on Wavelet Coeffcients of Radiate Sounds
3.2. Feature Extraction from PSNR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shih, C.; Rigney, D.A. Sliding friction and wear of tin-, indium- and lead-coated 52100 steel. Wear 1989, 134, 165–184. [Google Scholar] [CrossRef]
- Dang, V.H.; Perret-Liaudet, J.; Scheibert, J.; Le Bot, A. Direct numerical simulation of the dynamics of sliding rough surfaces. Comput. Mech. 2013, 52, 1169–1183. [Google Scholar] [CrossRef] [Green Version]
- Le Bot, A.; Bou-Chakra, E.; Michon, G. Dissipation of Vibration in Rough Contact. Tribol. Lett. 2011, 41, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Yang, S.; Zhao, Y.; Zhou, J.; Xu, T.; Liu, W. Friction and Wear Studies of Octadecyltrichlorosilane SAM on Silicon. Tribol. Lett. 2002, 13, 233–239. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Helali, M. The effect of amplitude of vibration on the coefficient of friction for different materials. Tribol. Int. 2008, 41, 307–314. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Z. Time—frequency analysis of friction-induced vibration under reciprocating sliding conditions. Wear 2007, 262, 1–10. [Google Scholar] [CrossRef]
- Sun, D.; Li, G.; Wei, H.; Liao, H. Experimental study on the chaotic attractor evolvement of the friction vibration in a running-in process. Tribol. Int. 2015, 88, 290–297. [Google Scholar] [CrossRef]
- Stender, M.; Di Bartolomeo, M.; Massi, F.; Hoffmann, N. Revealing transitions in friction-excited vibrations by nonlinear time-series analysis. Nonlinear Dyn. 2019, 98, 2613–2630. [Google Scholar] [CrossRef]
- Dong, C.; Mo, J.; Yuan, C.; Bai, X.; Tian, Y. Vibration and Noise Behaviors During Stick—Slip Friction. Tribol. Lett. 2019, 67, 103. [Google Scholar] [CrossRef]
- Abdelounis, H.B.; Le Bot, A.; Perret-Liaudet, J.; Zahouani, H. An experimental study on roughness noise of dry rough flat surfaces. Wear 2010, 268, 335–345. [Google Scholar] [CrossRef]
- Hase, A.; Mishina, H.; Wada, M. Correlation between features of acoustic emission signals and mechanical wear mechanisms. Wear 2012, 292, 144–150. [Google Scholar] [CrossRef]
- Geng, Z.; Puhan, D.; Reddyhoff, T. Using acoustic emission to characterize friction and wear in dry sliding steel contacts. Tribol. Int. 2019, 134, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Le Bot, A. Noise of sliding rough contact. J. Phys. Conf. Ser. 2017, 797, 12006. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.R.; Arenas, J.P.; Salinas, R. Friction noise technique for the measurement of surface roughness of papers. Appl. Acoust. 2009, 70, 1235–1240. [Google Scholar] [CrossRef]
- Dobrynin, S.A.; Kolubaev, E.A.; Smolin, A.Y.; Dmitriev, A.I.; Psakhie, S.G. Time-frequency analysis of acoustic signals in the audio-frequency range generated during Hadfield’s steel friction. Tech. Phys. Lett. 2010, 36, 606–609. [Google Scholar] [CrossRef]
- Fan, Y.; Gu, F.; Ball, A. Modelling acoustic emissions generated by sliding friction. Wear 2010, 268, 811–815. [Google Scholar] [CrossRef]
- Akay, A. Acoustics of friction. J. Acoust. Soc. Am. 2002, 111, 1525–1548. [Google Scholar] [CrossRef]
- Simon, G.D.; Deivanathan, R. Early detection of drilling tool wear by vibration data acquisition and classification. Manuf. Lett. 2019, 21, 60–65. [Google Scholar] [CrossRef]
- Ahmed, Y.S.; Arif, A.; Veldhuis, S.C. Application of the wavelet transform to acoustic emission signals for built-up edge monitoring in stainless steel machining. Measurement 2020, 154, 107478. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Wang, X.; Zhang, Y. Rolling bearing fault diagnosis based on improved adaptive parameterless empirical wavelet transform and sparse denoising. Measurement 2020, 152, 107392. [Google Scholar] [CrossRef]
- Burwell, J.T., Jr. Survey of possible wear mechanisms. Wear 1957, 1, 119–141. [Google Scholar] [CrossRef]
- Kovaříková, I.; Szewczyková, B.; Blaškoviš, P.; Hodúlová, E.; Lechovič, E. Study and characteristic of abrasive wear mechanisms. Mater. Sci. Technol. 2009, 1, 1–8. [Google Scholar]
- Kato, K.; Adachi, K. Wear mechanisms. In Modern Tribology Handbook: Volume One: Principles of Tribology; CRC Press: Boca Raton, FL, USA, 2000; pp. 273–300. [Google Scholar]
- Archard, J. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Hokkirigawa, K.; Kato, K. An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear. Tribol. Int. 1988, 21, 51–57. [Google Scholar] [CrossRef]
- Hariharan, G.; Kannan, K.; Sharma, K. Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 2009, 211, 284–292. [Google Scholar] [CrossRef]
- Stanković, R.S.; Falkowski, B.J. The Haar wavelet transform: Its status and achievements. Comput. Electr. Eng. 2003, 29, 25–44. [Google Scholar] [CrossRef]
- Lepik, Ü.; Hein, H. Haar wavelets. In Haar Wavelets; Springer: Berlin/Heidelberg, Germany, 2014; pp. 7–20. [Google Scholar]
- Li, T.-H.; Oh, H.-S. Wavelet spectrum and its characterization property for random processes. IEEE Trans. Inf. Theory 2002, 48, 2922–2937. [Google Scholar]
- Demanet, L.; Ying, L. Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal. 2007, 23, 368–387. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Jagriti, H.S.; Kumar, R. Multilevel Technique to Improve PSNR and MSE in Audio Steganography. Int. J. Comput. Appl. 2014, 103, 94213. [Google Scholar] [CrossRef]
- Awad, A. Impulse noise reduction in audio signal through multi-stage technique. Eng. Sci. Technol. Int. J. 2019, 22, 629–636. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, Y.; Lee, D.; Yeom, J.; Park, J. The Feature Extraction through Wavelet Coefficients of Metal Friction Noise for Adhesive and Abrasive Wear Monitoring. Appl. Sci. 2021, 11, 3755. https://doi.org/10.3390/app11093755
Seong Y, Lee D, Yeom J, Park J. The Feature Extraction through Wavelet Coefficients of Metal Friction Noise for Adhesive and Abrasive Wear Monitoring. Applied Sciences. 2021; 11(9):3755. https://doi.org/10.3390/app11093755
Chicago/Turabian StyleSeong, Yeonuk, Donghyeon Lee, Jihye Yeom, and Junhong Park. 2021. "The Feature Extraction through Wavelet Coefficients of Metal Friction Noise for Adhesive and Abrasive Wear Monitoring" Applied Sciences 11, no. 9: 3755. https://doi.org/10.3390/app11093755
APA StyleSeong, Y., Lee, D., Yeom, J., & Park, J. (2021). The Feature Extraction through Wavelet Coefficients of Metal Friction Noise for Adhesive and Abrasive Wear Monitoring. Applied Sciences, 11(9), 3755. https://doi.org/10.3390/app11093755