Investigation on Sex Hormone-Disruption Effects of Two Novel Brominated Flame Retardants (DBDPE and BTBPE) in Male Zebrafish (Danio rerio) and Two Human Cell Lines (H295R and MVLN)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Zebrafish Culture and Exposure
2.3. H295R Cell Culture and Exposure
2.4. MVLN Cell Culture and Exposure
2.5. Sex Hormone Extraction and Measurement
2.6. Measurement of Gene Expression
2.7. Statistical Analysis
3. Results
3.1. In Vivo Assay with Male Zebrafish
Alteration of Sex Hormones and Gene Expressions Related to Vitellogenesis
3.2. In Vitro Assay with H295R and MVLN Cell Lines
3.2.1. Sex Hormone and the Related Gene in H295R Cell Line
3.2.2. ER-Binding Affinity in MVLN Cell Line
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Covaci, A.; Harrad, S.; Abdallah, M.A.E.; Ali, N.; Law, R.J.; Herzke, D.; de Wit, C.A. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environ. Int. 2011, 37, 532–556. [Google Scholar] [CrossRef] [PubMed]
- Stockholm Convention on Persistent Organic Pollutants (POPs) Website. Available online: http://www.chm.pops.int (accessed on 31 March 2021).
- Sharkey, M.; Harrad, S.; Abou-Elwafa Abdallah, M.; Drage, D.S.; Berresheim, H. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Environ. Int. 2020, 144, 106041. [Google Scholar] [CrossRef]
- Den Hond, E.; Tournaye, H.; de Sutter, P.; Ombelet, W.; Baeyens, W.; Covaci, A.; Cox, B.; Nawrot, T.S.; van Larebeke, N.; D’Hooghe, T. Human exposure to endocrine disrupting chemicals and fertility: A case-control study in male subfertility patients. Environ. Int. 2015, 84, 154–160. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, Y.J.; Lee, E.; Kim, M.S.; Kwack, S.J.; Kim, K.B.; Chung, K.K.; Kang, T.S.; Han, S.Y.; Lee, J.; et al. Effects of gestational exposure to decabromodiphenyl ether on reproductive parameters, thyroid hormone levels, and neuronal development in sprague-dawley rats offspring. J. Toxicol. Environ. Heal. Part A Curr. Issues 2009, 72, 1296–1303. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, B.; Guo, Y.; Xu, T.; Lee, J.S.; Qian, P.Y.; Zhou, B. High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae. Environ. Pollut. 2016, 214, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Legler, J.; Brouwer, A. Are brominated flame retardants endocrine disruptors? Environ. Int. 2003, 29, 879–885. [Google Scholar] [CrossRef]
- Ali, N.; Harrad, S.; Goosey, E.; Neels, H.; Covaci, A. “Novel” brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure. Chemosphere 2011, 83, 1360–1365. [Google Scholar] [CrossRef]
- Kierkegaard, A.; Björklund, J.; Fridén, U. Identification of the flame retardant decabromodiphenyl ethane in the environment. Environ. Sci. Technol. 2004, 38, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Flame Retardants: A General Introduction; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Arias, P.A. Brominated Flame Retardants—An Overview. In Proceedings of the Second International Workshop on Brominated Flame Retardants, Stockholm, Sweden, 14–16 May 2001; pp. 14–16. [Google Scholar]
- Eljarrat, E.; Barceló, D. The Handbook of Environmental Chemistry: Brominated Flame Retardants, 1st ed.; Eljarrat, E., Barceló, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-19269-2. [Google Scholar]
- Watanabe, I.; Sakai, S.I. Environmental release and behavior of brominated flame retardants. Environ. Int. 2003, 29, 665–682. [Google Scholar] [CrossRef]
- Yu, G.; Bu, Q.; Cao, Z.; Du, X.; Xia, J.; Wu, M.; Huang, J. Brominated flame retardants (BFRs): A review on environmental contamination in China. Chemosphere 2016, 150, 479–490. [Google Scholar] [CrossRef]
- Verreault, J.; Gebbink, W.A.; Gauthier, L.T.; Gabrielsen, G.W.; Letcher, R.J. Brominated flame retardants in glaucous gulls from the Norwegian arctic: More than just an issue of polybrominated diphenyl ethers. Environ. Sci. Technol. 2007, 41, 4925–4931. [Google Scholar] [CrossRef]
- Xiong, P.; Yan, X.; Zhu, Q.; Qu, G.; Shi, J.; Liao, C.; Jiang, G. A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants. Environ. Sci. Technol. 2019, 53, 13551–13569. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, K.; Ma, L.X.; Sun, S.J.; Jia, L.R.; Yuan, A.N.; Shen, J.M.; Qi, H.; Zhang, A.P. Deca-BDE and alternative halogenated flame retardants in a wastewater treatment plant in Harbin (2009–2016): Occurrence, temporal trends, seasonal variation, and fate. Sci. Total Environ. 2018, 625, 1156–1163. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Y.; Cheng, Y.; Chen, Y.; Chen, L.; Xie, C.; Dai, S.; Luo, X.; Zhang, L.; Mai, B. Halogenated flame retardants in surface sediments from fourteen estuaries, South China. Mar. Pollut. Bull. 2021, 164, 112099. [Google Scholar] [CrossRef] [PubMed]
- Law, K.; Halldorson, T.; Danell, R.; Stern, G.; Gewurtz, S.; Alaee, M.; Marvin, C.; Whittle, M.; Tomy, G. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ. Toxicol. Chem. 2006, 25, 2177–2186. [Google Scholar] [CrossRef]
- Wu, J.P.; Guan, Y.T.; Zhang, Y.; Luo, X.J.; Zhi, H.; Chen, S.J.; Mai, B.X. Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web. Environ. Sci. Technol. 2010, 44, 5490–5495. [Google Scholar] [CrossRef]
- Vorkamp, K.; Rigét, F.F. A review of new and current-use contaminants in the Arctic environment: Evidence of long-range transport and indications of bioaccumulation. Chemosphere 2014, 111, 379–395. [Google Scholar] [CrossRef]
- Jin, X.; Lee, S.; Jeong, Y.; Yu, J.P.; Baek, W.K.; Shin, K.H.; Kannan, K.; Moon, H.B. Species-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from Korea. Environ. Pollut. 2016, 219, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Venier, M.; Salamova, A.; Hites, R.A. Bioaccumulation of Dechloranes, organophosphate esters, and other flame retardants in Great Lakes fish. Sci. Total Environ. 2017, 583, 1–9. [Google Scholar] [CrossRef]
- Kajiwara, N.; Noma, Y.; Takigami, H. Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight. Environ. Sci. Technol. 2008, 42, 4404–4409. [Google Scholar] [CrossRef] [PubMed]
- Tomy, G.T.; Palace, V.P.; Pleskach, K.; Ismail, N.; Oswald, T.; Danell, R.; Wautier, K.; Evans, B. Dietary exposure of juvenile rainbow trout (Oncorhynchus mykiss) to 1,2-bis(2,4,6-tribromophenoxy)ethane: Bioaccumulation parameters, biochemical effects, and metabolism. Environ. Sci. Technol. 2007, 41, 4913–4918. [Google Scholar] [CrossRef]
- Dong, L.; Wang, S.; Qu, J.; You, H.; Liu, D. New understanding of novel brominated flame retardants (NBFRs): Neuro(endocrine) toxicity. Ecotoxicol. Environ. Saf. 2021, 208, 111570. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ling, S.; Guan, K.; Luo, X.; Chen, L.; Han, J.; Zhang, W.; Mai, B.; Zhou, B. Bioconcentration, biotransformation, and thyroid endocrine disruption of decabromodiphenyl Ethane (DBDPE), a novel brominated flame retardant, in zebrafish larvae. Environ. Sci. Technol. 2019, 53, 8437–8446. [Google Scholar] [CrossRef] [PubMed]
- De Jourdan, B.P.; Oakes, K.; Hanson, M.; Sibley, P.; Servos, M.; Muir, D.; Solomon, K. Physiological effects of 3 non-PBDE brominated flame retardants on Pimephales promelas (Fathead minnow) exposed in outdoor mesocosms. Interdiscip. Stud. Environ. Chem. Pollut. Ecotoxicol. 2011, 6, 55–66. [Google Scholar]
- Giraudo, M.; Douville, M.; Letcher, R.J.; Houde, M. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. Aquat. Toxicol. 2017, 186, 40–49. [Google Scholar] [CrossRef]
- Nakari, T.; Huhtala, S. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant. Environ. Toxicol. 2009, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.T.C.; Holmes, P.; Humfrey, C.D.N. Reproductive health in humans and wildlife: Are adverse trends associated with environmental chemical exposure? Sci. Total Environ. 1997, 205, 97–106. [Google Scholar] [CrossRef]
- He, J.H.; Gao, J.M.; Huang, C.J.; Li, C.Q. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol. Teratol. 2014, 42, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.; Hollert, H.; Cooper, R.; Vinggaard, A.M.; Akahori, Y.; Murphy, M.; Nellemann, C.; Higley, E.; Newsted, J.; Laskey, J.; et al. The OECD validation program of the H295R steroidogenesis assay: Phase 3. Final inter-laboratory validation study. Environ. Sci. Pollut. Res. 2011, 18, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Demirpence, E.; Duchesne, M.J.; Badia, E.; Gagne, D.; Pons, M. MVLN Cells: A bioluminescent MCF-7-derived cell line to study the modulation of estrogenic activity. J. Steroid Biochem. Mol. Biol. 1993, 46, 355–364. [Google Scholar] [CrossRef]
- Freyberger, A.; Schmuck, G. Screening for estrogenicity and anti-estrogenicity: A critical evaluation of an MVLN cell-based transactivation assay. Toxicol. Lett. 2005, 155, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Ji, K.; Choi, K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquat. Toxicol. 2012, 114–115, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.; Choi, K.; Kim, K.T. Comparative analysis of endocrine disrupting effects of major phthalates in employed two cell lines (MVLN and H295R) and embryonic zebrafish assay. Environ. Res. 2019, 172, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-Operation and Development. OECD Guideline for Testing of Chemicals 204: Fish, Prolonged Toxicity Test 14-Day Study; Organisation for Economic Co-Operation and Development: Paris, France, 1984; pp. 1–9. [Google Scholar]
- Huda Bhuiyan, M.N.; Kang, H.; Kim, J.H.; Kim, S.; Kho, Y.; Choi, K. Endocrine disruption by several aniline derivatives and related mechanisms in a human adrenal H295R cell line and adult male zebrafish. Ecotoxicol. Environ. Saf. 2019, 180, 326–332. [Google Scholar] [CrossRef]
- Ji, K.; Choi, K.; Lee, S.; Park, S.; Khim, J.S.; Jo, E.H.; Choi, K.; Zhang, X.; Giesy, J.P. Effects of sulfathiazole, oxytetracycline and chlortetracycline on steroidogenesis in the human adrenocarcinoma (H295R) cell line and freshwater fish Oryzias latipes. J. Hazard. Mater. 2010, 182, 494–502. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hara, A.; Hiramatsu, N.; Fujita, T. Vitellogenesis and choriogenesis in fishes. Fish. Sci. 2016, 82, 187–202. [Google Scholar] [CrossRef] [Green Version]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Chang, H.; Wiseman, S.; He, Y.; Higley, E.; Jones, P.; Wong, C.K.C.; Al-Khedhairy, A.; Giesy, J.P.; Hecker, M. Bisphenol A disrupts steroidogenesis in human H295R cells. Toxicol. Sci. 2011, 121, 320–327. [Google Scholar] [CrossRef]
- Yu, L.; Liu, C.; Chen, Q.; Zhou, B. Endocrine disruption and reproduction impairment in zebrafish after long-term exposure to DE-71. Environ. Toxicol. Chem. 2014, 33, 1354–1362. [Google Scholar] [CrossRef]
- Song, R.; He, Y.; Murphy, M.B.; Yeung, L.W.Y.; Yu, R.M.K.; Lam, M.H.W.; Lam, P.K.S.; Hecker, M.; Giesy, J.P.; Wu, R.S.S.; et al. Effects of fifteen PBDE metabolites, DE71, DE79 and TBBPA on steroidogenesis in the H295R cell line. Chemosphere 2008, 71, 1888–1894. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.F.; Sanderson, J.T.; Letcher, R.J.; Bergman, Å.; van den Berg, M. Inhibition and induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells. Toxicol. Sci. 2005, 88, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, D.L.; Kannan, K.; Priest, B.T.; Giesy, J.P. In vitro assessment of potential mechanism-specific effects of polybrominated diphenyl ethers. Environ. Toxicol. Chem. 2002, 21, 2431–2433. [Google Scholar] [CrossRef]
- Leaños-Castañeda, O.; van der Kraak, G. Functional characterization of estrogen receptor subtypes, ERα and ERβ, mediating vitellogenin production in the liver of rainbow trout. Toxicol. Appl. Pharmacol. 2007, 224, 116–125. [Google Scholar] [CrossRef]
- Liu, C.; Deng, J.; Yu, L.; Ramesh, M.; Zhou, B. Endocrine disruption and reproductive impairment in zebrafish by exposure to 8:2 fluorotelomer alcohol. Aquat. Toxicol. 2010, 96, 70–76. [Google Scholar] [CrossRef]
- Spanò, L.; Tyler, C.R.; van Aerle, R.; Devos, P.; Mandiki, S.N.M.; Silvestre, F.; Thomé, J.P.; Kestemont, P. Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus). Aquat. Toxicol. 2004, 66, 369–379. [Google Scholar] [CrossRef]
- Sanderson, J.T.; Letcher, R.J.; Heneweer, M.; Giesy, J.P.; van den Berg, M. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes. Environ. Health Perspect. 2001, 109, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Latonnelle, K.; Fostier, A.; Le Menn, F.; Bennetau-Pelissero, C. Binding affinities of hepatic nuclear estrogen receptors for phytoestrogens in rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baeri). Gen. Comp. Endocrinol. 2002, 129, 69–79. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, H.; Tian, Z.H.; Sun, A.; Dong, Y.; Dong, T.; Hu, H.X. Effects of 11-ketotestosterone on development of the previtellogenic ovary in the sterlet, Acipenser ruthenus. Front. Endocrinol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Mori, T.; Matsumoto, H.; Yokota, H. Androgen-induced vitellogenin gene expression in primary cultures of rainbow trout hepatocytes. J. Steroid Biochem. Mol. Biol. 1998, 67, 133–141. [Google Scholar] [CrossRef]
- Lopes, C.; Madureira, T.V.; Gonçalves, J.F.; Rocha, E. Disruption of classical estrogenic targets in brown trout primary hepatocytes by the model androgens testosterone and dihydrotestosterone. Aquat. Toxicol. 2020, 227, 105586. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Lee, G.; Kim, S.; Choi, K. Investigation on Sex Hormone-Disruption Effects of Two Novel Brominated Flame Retardants (DBDPE and BTBPE) in Male Zebrafish (Danio rerio) and Two Human Cell Lines (H295R and MVLN). Appl. Sci. 2021, 11, 3837. https://doi.org/10.3390/app11093837
Choi J, Lee G, Kim S, Choi K. Investigation on Sex Hormone-Disruption Effects of Two Novel Brominated Flame Retardants (DBDPE and BTBPE) in Male Zebrafish (Danio rerio) and Two Human Cell Lines (H295R and MVLN). Applied Sciences. 2021; 11(9):3837. https://doi.org/10.3390/app11093837
Chicago/Turabian StyleChoi, Jiwon, Gowoon Lee, Sunmi Kim, and Kyungho Choi. 2021. "Investigation on Sex Hormone-Disruption Effects of Two Novel Brominated Flame Retardants (DBDPE and BTBPE) in Male Zebrafish (Danio rerio) and Two Human Cell Lines (H295R and MVLN)" Applied Sciences 11, no. 9: 3837. https://doi.org/10.3390/app11093837
APA StyleChoi, J., Lee, G., Kim, S., & Choi, K. (2021). Investigation on Sex Hormone-Disruption Effects of Two Novel Brominated Flame Retardants (DBDPE and BTBPE) in Male Zebrafish (Danio rerio) and Two Human Cell Lines (H295R and MVLN). Applied Sciences, 11(9), 3837. https://doi.org/10.3390/app11093837