The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of the Effect of Plant Extracts on the Lactic Acid Fermentation of Milk
2.3. Determination of the Effect of Plant Extracts on the Populations of Lactic Acid Bacteria
2.4. Determination of TPC of Plant Extracts
2.5. Determination of Antioxidant Capacities of Plant Extracts
2.6. ESI-QTOF Qualitative Analysis of Plant Extracts
2.7. Statistical Analysis
3. Results
3.1. Determination of the Effect of Plant Extracts on Lactic Acid Fermentation
3.2. Determination of the Effect of Plant Extracts on the Populations of Lactic Acid Bacteria
3.3. TPC and Antioxidant Capacities of Plant Extracts
3.4. Qualitative Analysis of Plant Extracts
4. Discussion
4.1. Antimicrobial Activity of Plant Extracts
4.2. TPC and Antioxidant Capacities of Plant Extracts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goun, E.A.; Petrichenko, V.M.; Solodnikov, S.U.; Suhinina, T.V.; Kline, M.A.; Cunningham, G.; Miles, H. Anticancer and antithrombin activity of Russian plants. J. Ethnopharmacol. 2002, 81, 337–342. [Google Scholar] [CrossRef]
- O’Hara, M.; Kiefer, D.; Farrell, K.; Kemper, K. A review of 12 commonly used medicinal herbs. Arch. Fam. Med. 1998, 7, 523–536. [Google Scholar] [CrossRef]
- Woźniak, M.; Ostrowska, K.; Szymański, Ł.; Wybieralska, K.; Zielińśki, R. Aktywność przeciwrodnikowa ekstraktów szałwii i rozmarynu. Żywność 2009, 4, 133–141, (Abstract in English). [Google Scholar]
- Tildesley, N.T.; Kennedy, D.O.; Perry, E.K.; Ballard, C.G.; Savelev, S.A.W.K.; Wesnes, K.A.; Scholey, A.B. Salvia lavandulaefolia (Spanish Sage) enhances memory in health young volunteers. Pharmacol. Biochem. Behav. 2003, 75, 669–674. [Google Scholar] [CrossRef]
- Houghton, P.J. Activity and constituents of sage relevant to the potential treatment of symptoms Alzheimer’s disease. Herba Gran 2004, 61, 38–43. [Google Scholar]
- Khayyal, M.T.; El-Ghazaly, M.A.; Kenawy, S.A.; Seif-El-Nasr, M.; Mahran, L.G.; Kafafi, Y.A.; Okpanyi, S.N. Antiulcerogenic effect of certain plant extracts and their combinations. Arzneimittelforsch 2001, 51, 545–553. [Google Scholar]
- Torrado, S.; Agis, A.; Jimenez, M.E.; Cadorniga, R. Effect of dissolution profile and (−)-alpha-bisabolol on the gastrotoxicity of acetylsalicylic acid. Pharmazie 1995, 50, 141–143. [Google Scholar] [PubMed]
- Sebai, H.; Jabri, M.A.; Souli, A.; Rtibi, K.; Selmi, S.; Tebourbi, O.; Sakly, M. Antidiarrheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J. Ethnopharmacol. 2014, 152, 327–332. [Google Scholar] [CrossRef]
- Viapiana, A.; Konopacka, A.; Waleron, K.; Wesolowski, M. Cistus incanus L. commercial products as a good source of polyphenols in human diet. Ind. Crops Prod. 2017, 107, 297–304. [Google Scholar] [CrossRef]
- Dimcheva, V.; Kaloyanov, N.; Karsheva, M. The polyphenol composition of Cistus incanus L., Trachystemon orientalis L. and Melissa officinalis L. infusions by HPLC-DAD method. Open J. Anal. Bioanal. Chem. 2019, 3, 031–038. [Google Scholar] [CrossRef] [Green Version]
- Arcos, M.L.B.; Cremaschi, G.; Werner, S.; Coussio, J.; Ferraro, G.; Anesini, C. Tília cordata Mill. extracts and scopoletin (isolated compound): Differential cell growth effects on lymphocytes. Phytother. Res. 2006, 20, 34–40. [Google Scholar] [CrossRef]
- Hyun Kim, K.; Moon, E.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Lignan constituents of Tilia amurensis and their biological evaluation on antitumor and anti-inflammatory activities. Food. Chem. Toxicol. 2012, 50, 3680–3686. [Google Scholar]
- Martinez, A.L.; Gonzalez-Trujano, M.A.; Aguirre-Hernandez, E.; Moreno, J.; Soto-Hernandez, M.; Lopez-Munoz, F.J. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology 2009, 56, 564–571. [Google Scholar] [CrossRef]
- Toker, G.; Küpeli, E.; Memisoğlu, M.; Yesilada, E. Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea (silver linden). J. Ethnopharmacol. 2004, 95, 393–397. [Google Scholar] [CrossRef]
- Aguirre-Hernandez, E.; Martinez, A.L.; Gonzalez-Trujano, M.A.; Moreno, J.; Vibrans, H.; Soto-Hernandez, M. Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. J. Ethnopharmacol. 2007, 109, 140–145. [Google Scholar] [CrossRef]
- Herrera-Ruiz, M.; Román-Ramos, R.; Zamilpa, A.; Tortoriello, J.; Jiménez-Ferrer, J.E. Flavonoids from Tilia americana with anxiolytic activity in plus-maze test. J. Ethnopharmacol. 2008, 118, 312–317. [Google Scholar] [CrossRef] [PubMed]
- ESCOP. Monographs 2013: European Scientific Cooperative on Phytotherapy. Plantaginis lanceolatae Folium/Herba, 2nd ed.; Ribwort Plantain Leaf/Herb; European Scientific Cooperative on Phytotherapy (ESCOP): Exeter, UK, 2013; pp. 383–387. [Google Scholar]
- Parus, A.; Grys, A. Plantago lanceolata L.-medicinal properties. Post Fit. 2010, 3, 162–165, (Abstract in English). [Google Scholar]
- Dalar, A.; Türker, M.; Konczak, I. Antioxidant capacity and phenolic constituents of Malva neglecta Wallr. and Plantago lanceolata L. from Eastern Anatolia Region of Turkey. J. Herbal Med. 2012, 2, 42–51. [Google Scholar] [CrossRef]
- Galvez, M.; Martí, C.; Lopez-Lazaro, M.; Cortes, F.; Ayuso, J. Cytotoxic effect of Plantago spp. on cancer cell lines. J. Ethnopharmacol. 2003, 88, 125–130. [Google Scholar] [CrossRef]
- Deters, A.; Zippel, J.; Hellenbrand, N.; Pappai, D.; Possemeyer, C.; Hensel, A. Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): Cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro. J. Ethnopharmacol. 2010, 127, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Elmastas, M.; Ozturk, L.; Gokce, I.; Erenler, R.; Aboul Enein, H.Y. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal. Lett. 2004, 37, 1859–1869. [Google Scholar] [CrossRef]
- Izzo, A.A.; Di Carlo, G.; Mascolo, N.; Autore, G.; Capasso, F. Antiulcer effect of flavonoids. Role of endogenous PAF. Phytother. Res. 1994, 29, 87–93. [Google Scholar] [CrossRef]
- Guerrero, J.A.; Lozano, M.L.; Castillo, J.; Benavente Garcia, O.; Vicente, V.; Rivera, J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost. 2005, 3, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Ścibisz, I.; Zaręba, D.; Ziarno, M. Antioxidant properties and effect on lactic acid bacterial growth of spice extracts. CyTA 2015, 13, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, M.; Ziarno, M.; Rudzińska, M.; Tarnowska, K.; Majewska, E.; Kowalska, D. Skład chemiczny olejku eterycznego z kolendry i jego wpływ na wzrost wybranych szczepów bakterii kwasu mlekowego. Żywność 2018, 25, 97–111, (Abstract in English). [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D. Effects of milk components and food additives on survival of three bifidobacteria strains in fermented milk under simulated gastrointestinal tract conditions. Microb. Ecol. Health Dis. 2015, 26. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phodphotonegstics acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landete, J.M.; Rodríguez, H.; Curiel, J.A.; de las Rivas, B.; Mancheño, J.M.; Muñoz, R. Gene cloning, expresión, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J. Ind. Microbiol. Biotechnol. 2010, 37, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Takagaki, A.; Nanjo, F. Metabolism of (−)-epigallocatechin gallate by rat intestinal flora. J. Agric. Food Chem. 2010, 58, 1313e1321. [Google Scholar] [CrossRef]
- Otaibi, M.A.; Demerdash, H.E. Improvement of the quality and shelf life of concentrated yoghurt (labneh) by the addition of some essential oils. Afr. J. Microbiol. Res. 2008, 2, 156–161. [Google Scholar]
- El-Nawawy, M.A.; El-Kenany, Y.M.; Abd El-Ghaffar, E.A. Effect of some herb plants on the use of yoghurt culture. Ann. Agric. Sci. 1998, 7, 15–17. [Google Scholar]
- Zaręba, D.; Ziarno, M.; Strzelczyk, B. Przeżywalność bakterii fermentacji mlekowej w warunkach modelowych jelita cienkiego. Żywność 2008, 15, 197–205, (Abstract in English). [Google Scholar]
- Ziarno, M.; Margol, B. Research into the Ability of Some Selected Starter Lactic Acid Bacteria (Slab) to Survive in a Model Gastric Juice and Cholesterol Binding Under Those These Conditions. Żywność 2007, 6, 304–314, (Abstract in English). [Google Scholar]
- Al-Turki, A.I.; El-Ziney, M.G.; Abdel-Salam, A.M. Chemical and anti-bacterial characterization of aqueous extracts of oregano, marjoram, sage and licorice and their application in milk and labneh. J. Food Agric. Environ. 2008, 6, 39–44. [Google Scholar]
- Nes, I.F.; Skjelkvale, R. Effect of natural spices and oleoresins on Lactobacillus plantarum in the fermentation of dry sausage. J. Food Sci. 1982, 47, 1618–1625. [Google Scholar] [CrossRef]
- Kivanç, M.; Akgül, A.; Doǧan, A. Inhibitory and stimulatory effects of cumin, oregano and their essential oils on growth and acid production of Lactobacillus plantarum and Leuconostoc mesenteroides. Int. J. Food Microbiol. 1991, 13, 81–85. [Google Scholar] [CrossRef]
- Michael, M.; Phebus, R.K.; Schmidt, K.A. Impact of a plant extract on the viability of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus in nonfat yogurt. Int. Dairy J. 2010, 20, 665–672. [Google Scholar] [CrossRef]
- Yangmei, Q.; Jiang, W.; Hou, H.; Zhang, H. Application of Plant Green Juice Powder in Maintaining Stability of Viable Count of Yoghourt in Shelf Life. Patent No. CN 102106386 B, 22 March 1991. [Google Scholar]
- China, R.; Mukherjee, S.; Sen, S.; Bose, S.; Datta, S.; Koley, H.; Dhar, P. Antimicrobial activity of Sesbania grandiflora flower polyphenol extracts on some pathogenic bacteria and growth stimulatory effect on the probiotic organism Lactobacillus acidophilus. Microbiol. Res. 2012, 167, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, M.; Ivanov, G.; Mihalev, K.; Slavchev, A.; Ivanova, I.; Vlaseva, R. Investigation of antimicrobial activity of polyphenol-enriched extracts against probiotic lactic acid bacteria. Food Sci. Appl. Biotechnol. 2019, 2, 67–73. [Google Scholar] [CrossRef]
- Letchamo, W.; Ward, W.; Heard, B.; Heard, D. Essential oil of Valeriana officinalis L. cultivars and their antimicrobial activity as influenced by harvesting time under commercial organic cultivation. J. Agric. Food Chem. 2004, 52, 3915–3919. [Google Scholar] [CrossRef] [PubMed]
- Hać-Szymańczuk, E.; Lipińska, E.; Błażejak, S.; Bieniak, K. Ocena aktywności przeciwbakteryjnej szałwii lekarskiej (Salvia officinalis L.). Brom. Chem. Toksykol. 2011, 44, 667–672, (Abstract in English). [Google Scholar]
- Kędzia, A.; Dera-Tomaszewska, B.; Ziółkowska-Klinkosz, M.; Kędzia, A.W.; Wojtaszek-Słomińska, A.; Czernecka, B. Działanie olejku szałwiowego (Oleum Salviae lavandulaefoliae) na bakterie tlenowe izolowane z jamy ustnej, dróg oddechowych i przewodu pokarmowego. Post. Fitoter. 2011, 1, 238–242, (Abstract in English). [Google Scholar]
- Gniewosz, M.; Kraśniewska, K.; Węglarz, Z.; Przybył, J.L. Porównanie przeciwdrobnoustrojowej aktywności etanolowego i wodnego ekstraktu z szałwii lekarskiej (Salvia officinalis L.). Brom. Chem. Toksykol. 2012, 45, 743748, (Abstract in English). [Google Scholar]
- Hołderna-Kędzia, E.; Kędzia, B. Działanie preparatów pochodzenia roślinnego na drobnoustroje probiotyczne. Post. Fitoter. 2012, 1, 72–77, (Abstract in English). [Google Scholar]
- Grys, A.; Kania, M.; Baraniak, J. Rumianek—Pospolita roślina zielarska o różnorodnych właściwościach biologicznych i leczniczych. Post. Fitoter. 2014, 1, 90–93, (Abstract in English). [Google Scholar]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.H.; Khalel, K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind. Crops Prod. 2013, 44, 437–445. [Google Scholar] [CrossRef]
- Ustün, O.; Ozçelik, B.; Akyön, Y.; Abbasoglu, U.; Yesilada, E. Flavonoids with anti-Helicobacter pylori activity from Cistus laurifolius leaves. J. Ethnopharmacol. 2006, 108, 457–461. [Google Scholar] [CrossRef]
- Hutschenreuther, A.; Birkemeyer, C.; Grötzinger, K.; Straubinger, R.K.; Rauwald, H.W. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi in vitro. Pharmazie 2010, 65, 290–295. [Google Scholar] [PubMed]
- Tomás, M.L.; Morales-Soto, A.; Barrajón-Catalán, E.; Roldán-Segura, C.; Segura-Carretero, A.; Micol, V. Correlation between the antibacterial activity and the composition of extracts derived from various Spanish Cistus species. Food. Chem. Toxicol. 2013, 55, 313–322. [Google Scholar] [CrossRef]
- Rebaya, A.; Belghith, S.I.; Hammrouni, S.; Maaroufi, A.; Ayadi, M.T.; Chérif, J.K. Antibacterial and Antifungal Activities of Ethanol Extracts of Halimium halimifolium, Cistus salviifolius and Cistus monspeliensis. Int. J. Pharm. Clin. Res. 2016, 8, 243–247. [Google Scholar]
- Gönül, Ş.E.A.; Karapinar, M. Inhibitory effect of linden flower (Tilia flower) on the growth of foodborne pathogens. Food Microbiol. 1987, 4, 97–100. [Google Scholar] [CrossRef]
- Yıldırım, A.; Mavi, A.; Oktay, M.; Kara, A.A.; Algur, Ö.F.; Bilaloǧlu, V. Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts. J. Agric. Food Chem. 2000, 48, 5030–5034. [Google Scholar] [CrossRef]
- Sharifa, A.A.; Neoh, Y.L.; Iswadi, M.I.; Khairul, O.; Abdul Halim, M.; Jamaludin, M.; Hing, H.L. Effects of methanol, ethanol and aqueous extract of Plantago major on gram positive bacteria, gram negative bacteria and yeast. Ann. Micr. 2008, 8, 42–44. [Google Scholar]
- Kahyaoğlu, M.; Türkoğlu, İ. Antimicrobial activities of some plants collected in Elazığ region. Dumlupinar Univ. Bilim. Enst. Derg. 2008, 15, 1–8. [Google Scholar]
- Ferrazzano, G.F.; Cantile, T.; Roberto, L.; Ingenito, A.; Catania, M.R.; Roscetto, E.; Pollio, A. Determination of the in vitro and in vivo antimicrobial activity on salivary Streptococci and Lactobacilli and chemical characterisation of the phenolic content of a Plantago lanceolata infusion. BioMed Res. Int. 2015, 2015, 286817. [Google Scholar] [CrossRef] [Green Version]
- Metiner, K.; Ozkan, O.; Ak, S. Antibacterial effects of ethanol and acetone extract of Plantago major L. on Gram positive and Gram negative bacteria. Kafkas Univ. Vet. Fak. Derg. 2012, 18, 503–505. [Google Scholar]
- Bonjar, S. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol. 2004, 94, 301–305. [Google Scholar] [CrossRef]
- Valiei, M.; Shafaghat, A.; Salimi, F. Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran. J. Med. Plants Res. 2011, 5, 6972–6976. [Google Scholar]
- Şen, B.; Mat, A. Chemical and medicinal evaluations of the Valeriana species in Turkey. J. Fac. Pharm. İstanbul Üniv. 2015, 45, 267–276. [Google Scholar]
- Katsarova, M.; Dimitrova, S.; Lukanov, L.; Sadakov, F.; Denev, F.; Plotnikov, E.; Kandilarov, I.; Kostadinova, I. Antioxidant activity and nontoxicity of extracts from Valeriana officinalis, Melissa officinalis, Crataegus monogyna, Hypericum perforatum, Serratula coronata and combinations Antistress 1 and Antistress 2. Bulg. Chem. Commun. 2017, 49, 93–98. [Google Scholar]
- Lukova, P.; Karcheva-Bahchevanska, D.; Dimitrova-Dyulgerova, I.; Katsarov, P.; Mladenov, R.; Iliev, I.; Nikolova, M. A comparative pharmacognostic study and assessment of antioxidant capacity of three species from Plantago genus. Farmacia 2018, 66, 609–614. [Google Scholar] [CrossRef]
- Wang PCh Ran, X.H.; Luo, R.H.; Ma, Q.Y.; Liu, Y.Q.; Zhoum, J.; Zhao, Y.X. Phenolic Compounds from the Roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 2013, 24, 1544–1548. [Google Scholar] [CrossRef]
- Koşar, M.; Dorman, H.J.D.; Hüsnü Can Başer, K.; Hiltunen, R. Salvia officinalis L.: Composition and Antioxidant-related Activities of a Crude Extract and Selected Sub-fractions. Nat. Prod. Commun. 2010, 9, 1453–1456. [Google Scholar] [CrossRef] [Green Version]
- Seddik, K.; Dalila, B.; Saliha, D.; Saliha, D.; Smain, A.; Noureddine, C.; Abderahmane, B.; Daoud, H.; Lekhmici, A. Polyphenols and antioxidant properties of extracts from Mentha pulegium L. and Matricaria chamomilla L. Pharm. Commun. 2013, 3, 35–40. [Google Scholar] [CrossRef]
- Ranjbar, A.; Mohsenzade, F.; Chehregani, A.; Khajavi, F.; Sifpanahi, H. Antioxidant capacity of various extracts of Matricaria Chamomilla, L. parts. Compl. Med. J. 2015, 4, 1022–1027. [Google Scholar]
- Dimcheva, V.; Karsheva, M. Cistus incanus from Strandja Mountain as a source of bioactive antioxidants. Plants 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Foo, L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Koşar, M.; Dorman, H.J.D.; Baser, K.H.C.; Hiltunen, R. An improved HPLC post-column methodology for the identification of free radical scavenging phytochemicals in complex mixtures. Chromatographia 2004, 60, 635–638. [Google Scholar] [CrossRef]
- Gericke, S.; Lübken, T.; Wolf, D.; Kaiser, M.; Hannig, C.; Speer, K. Identification of new compounds from sage flowers (Salvia officinalis L.) as markers for quality control and the influence of the manufacturing technology on the chemical composition and antibacterial activity of sage flower extracts. J. Agric. Food Chem. 2018, 66, 1843–1853. [Google Scholar] [CrossRef]
- Redaelli, C.; Formentini, L.; Santaniello, E. PLC determination of coumarins in Matricaria chamomilla. Planta Med. 1981, 43, 412–413. [Google Scholar] [CrossRef]
- Ohe, C.; Miami, M.; Hasegawa, C.; Ashida, K.; Sugino, M.; Kanamori, H. Seasonal variation in the production of the head and accumulation of glycosides in the head of Matricaria chamomilla. Acta Hortic. 1995, 390, 75–82. [Google Scholar] [CrossRef]
- Gupta, V.; Mittal, P.; Bansal, P.; Khokra, S.L.; Kaushik, D. Pharmacological potential of Matricaria recutita—A review. Int J. Pharm. Sci. Drug Res. 2010, 2, 12–16. [Google Scholar]
- Gori, A.; Ferrini, F.; Marzano, M.A.; Tattini, M.; Centritto, M.; Baratto, M.C.; Pogni, R.; Brunetti, C. Characterisation and antioxidant activity of crude extract and polyphenolic rich fractions from C. incanus leaves. Int. J. Mol. Sci. 2016, 17, 1344. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.; Facino, R.M.; Carini, M.; Mauri, P. Thermospray liquid chromatography mass spectrometry of flavonol glycosides from medicinal plants. J. Chrom. A 1994, 661, 121–126. [Google Scholar] [CrossRef]
- Behrens, A.; Maie, N.; Knicker, H.; Kogel-Knabner, I. MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Phytochemistry 2003, 62, 1159–1170. [Google Scholar] [CrossRef]
- Wissam, Z.; Nour, A.A.; Bushra, J.; Zein, N.; Saleh, D. Extracting and studying the antioxidant capacity of polyphenols in dry linden leaves (Tilia cordata). J. Pharm. Phytochem. 2017, 6, 258–262. [Google Scholar]
- Kivrak, Ş.; Göktürk, T.; Kivrak, I. Determination of phenolic composition of Tilia Tomentosa flowers using UPLC-ESI-MS/MS. Int. J. Sec. Metab. 2017, 4, 249–256. [Google Scholar] [CrossRef]
- Ashour, M.A.-G. Practical authentication and quality control of Tilia flos. Int. J. Biol. Pharm. Appl. Sci. 2017, 6, 1122–1156. [Google Scholar]
- Gudej, J. Flavonoids, phenolic acids and coumarins from the roots of Althaea officinalis. Planta Med. 1991, 57, 284–285. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.A.; Akhtar, N.; Akram, M.; Shah, P.A.; Saeed, T.; Ahmed, K.; Asif, H.M. Pharmacological activity of Althaea officinalis L. J. Med. Plants Res. 2011, 5, 5662–5666. [Google Scholar]
Plant Extracts | Sampling Time | Additive Level | Additive Level | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2% | 0.6% | 1.0% | 1.4% | 2.0% | 3.0% | 0.2% | 0.6% | 1.0% | 1.4% | 2.0% | 3.0% | ||
Streptococcus thermophilus Population [log CFU/mL] | Lactobacillus delbrueckii subsp. bulgaricus Population [log CFU/mL] | ||||||||||||
Valerian (Valeriana officinalis L.) | after fermentation | 7.9 ± 0.3 a | 7.6 ± 0.5 a | 7.8 ± 0.3 a | 7.8 ± 0.3 a | 7.6 ± 0.3 a | 7.4 ± 0.3 a | 7.2 ± 0.3 a | 7.1 ± 0.5 a | 7.0 ± 0.5 a | 7.0 ± 0.3 a | 6.6 ± 0.3 a | 6.4 ± 0.3 a |
after digestion | 6.6 ± 0.3 b | 6.5 ± 0.3 b | 7.0 ± 0.3 b | 6.8 ± 0.3 b | 6.5 ± 0.3 b | 6.3 ± 0.3 b | 6.7 ± 0.3 a | 6.5 ± 0.3 a | 6.8 ± 0.3 a | 6.9 ± 0.4 a | 6.5 ± 0.3 a | 6.1 ± 0.3 a | |
Sage (Salvia officinalis L.) | after fermentation | 7.8 ± 0.3 a | 8.0 ± 0.3 a | 7.7 ± 0.4 a | 7.9 ± 0.2 a | 7.7 ± 0.3a | 7.3 ± 0.4 a,b | 7.2 ± 0.3a | 6.7 ± 0.3 a,b | 6.4 ± 0.3 b | 6.4 ± 0.3 b | 6.4 ± 0.3 b | 6.5 ± 0.3 a,b |
after digestion | 6.9 ± 0.3 b | 7.0 ± 0.2 b | 6.3 ± 0.3 b,c | 6.8 ± 0.3 b,c | 6.6 ± 0.3 b,c | 6.2 ± 0.3 c | 6.8 ± 0.3 a,b | 6.3 ± 0.4 b | 6.2 ± 0.4 b | 6.2 ± 0.4 b | 6.1 ± 0.3 b | 6.1 ± 0.3 b | |
Chamomile (Matricaria chamomilla L.) | after fermentation | 7.9 ± 0.3 a | 7.9 ± 0.3 a | 8.0 ± 0.3 a | 7.9 ± 0.3 a | 7.7 ± 0.3 a | 7.5 ± 0.3 a | 7.2 ± 0.4 a | 7.0 ± 0.5 a | 6.8 ± 0.5 a | 6.8 ± 0.3 a | 6.5 ± 0.3 a | 6.4 ± 0.3 a |
after digestion | 6.8 ± 0.3 b | 6.3 ± 0.3 b | 6.9 ± 0.3 b | 6.9 ± 0.3 b | 6.5 ± 0.3 b | 6.3 ± 0.3 b | 6.6 ± 0.4 a | 6.3 ± 0.4 a | 6.6 ± 0.4 a | 6.7 ± 0.4 a | 6.5 ± 0.5 a | 6.2 ± 0.4 a | |
Cistus (Cistus L.) | after fermentation | 8.1 ± 0.3 a | 8.0 ± 0.3 a | 7.9 ± 0.3 a | 8.0 ± 0.3 a | 7.8 ± 0.3 a,b | 7.4 ± 0.4 a,b | 7.2 ± 0.5 a | 7.2 ± 0.3 a | 7.2 ± 0.3 a | 7.6 ± 0.3 a | 7.2 ± 0.3 a | 6.8 ± 0.3 a |
after digestion | 7.9 ± 0.4 a | 7.8 ± 0.4 a,b | 7.8 ± 0.4 a,b | 7.5 ± 0.3 a,b | 7.6 ± 0.3 a,b | 7.1 ± 0.2 b | 6.7 ± 0.4 a | 7.0 ± 0.4 a | 7.0 ± 0.4 a | 7.5 ± 0.4 a | 7.0 ± 0.4 a | 6.6 ± 0.4 a | |
Linden blossom (Tilia L.) | after fermentation | 8.2 ± 0.3 a | 8.3 ± 0.3 a | 8.3 ± 0.3 a | 8.2 ± 0.3 a | 7.9 ± 0.5 a | 7.8 ± 0.5 a | 7.5 ± 0.4 a | 7.7 ± 0.3 a | 7.2 ± 0.3 a | 7.5 ± 0.3 a | 7.3 ± 0.3 a | 6.9 ± 0.3 a,b |
after digestion | 6.9 ± 0.3 b | 6.8 ± 0.3 b | 6.9 ± 0.3 b | 6.8 ± 0.3 b | 6.6 ± 0.3 b | 6.4 ± 0.3 b | 7.0 ± 0.3 a | 6.8 ± 0.3 a,b | 7.0 ± 0.3 a | 6.7 ± 0.3 a,b | 6.7 ± 0.3 a,b | 6.3 ± 0.3 b | |
Ribwort plantain (Plantago lanceolata L.) | after fermentation | 8.1 ± 0.3 a | 8.1 ± 0.4 a | 8.3 ± 0.3 a | 8.3 ± 0.3 a | 7.9 ± 0.2 a | 7.5 ± 0.5 a,b | 7.3 ± 0.5 a | 7.1 ± 0.3 a | 7.1 ± 0.3 a | 7.3 ± 0.3 a | 7.2 ± 0.3 a | 6.8 ± 0.3 a |
after digestion | 7.1 ± 0.3 b | 6.7 ± 0.3 b,c | 6.6 ± 0.3 b,c | 6.5 ± 0.3 b,c | 6.5 ± 0.3 b,c | 6.2 ± 0.3 c | 7.0 ± 0.4 a | 6.7 ± 0.3 a | 7.0 ± 0.4 a | 7.2 ± 0.3 a | 6.8 ± 0.3 a | 6.5 ± 0.3 a | |
Marshmallow (Althaea L.) | after fermentation | 8.2 ± 0.3 a | 8.1 ± 0.3 a | 8.0 ± 0.3 a | 8.0 ± 0.3 a | 7.8 ± 0.3 a | 7.4 ± 0.2 a | 7.7 ± 0.5 a | 7.4 ± 0.3 a | 7.5 ± 0.4 a | 7.8 ± 0.3 a | 7.4 ± 0.3 a | 7.0 ± 0.3 a,b |
after digestion | 7.2 ± 0.3 a,b | 7.2 ± 0.3 a,b | 7.2 ± 0.3 a,b | 7.3 ± 0.3 a | 7.1 ± 0.3 a,b | 6.8 ± 0.3 b | 7.2 ± 0.3 a | 7.1 ± 0.3 a,b | 7.1 ± 0.3 a,b | 7.3 ± 0.3 a | 7.0 ± 0.3 a,b | 6.6 ± 0.3 b |
Plant Extracts | Total Phenolic Content [mg GAE/g of Extract] | Antioxidant Capacities [mmol TE/g Extract] | ||
---|---|---|---|---|
DPPH | ABTS | FRAP | ||
Valerian (Valeriana officinalis L.) | 30.97 ± 0.49 f | 0.104 ± 0.003 b | 0.159 ± 0.003 b | 0.090 ± 0.004 a |
Sage (Salvia officinalis L.) | 61.42 ± 0.43 c | 0.137 ± 0.002 c | 0.186 ± 0.004 c | 0.122 ± 0.004 b,c |
Chamomile (Matricaria chamomilla L.) | 32.56 ± 0.24 e | 0.099 ± 0.003 b | 0.120 ± 0.003 a | 0.092 ± 0.004 a |
Cistus (Cistus L.) | 106.38 ± 0.01 a | 0.154 ± 0.005 d | 0.208 ± 0.004 d | 0.136 ± 0.003 d |
Linden blossom (Tilia L.) | 104.72 ± 0.39 b | 0.161 ± 0.007 d | 0.210 ± 0.007 d | 0.133 ± 0.004 c,d |
Ribwort plantain (Plantago lanceolata L.) | 41.84 ± 0.20 d | 0.129 ± 0.004 c | 0.150 ± 0.003 b | 0.113 ± 0.006 b |
Marshmallow (Althaea L.) | 24.06 ± 0.34 g | 0.084 ± 0.003 a | 0.123 ± 0.005 a | 0.098 ± 0.007 a |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 255.0510 449.1298 | - - | 255(100), 193(10) 221(100) | C11H11O7 C18H25O13 | 0.2 0.6 | 13.2 43.8 | piscidic acid unidentified |
2 | 1.8 | 361.1504 | - | 361(100), 199(5) | C16H25O9 | −0.1 | 11.3 | unidentified |
3 | 2.5 | 351.0717 | - | 191(100), 215(11) | C16H15O9 | 1.3 | 20.1 | caffeoylquinic acid (quinone form) |
4 | 2.7 | 353.0873 | - | 173(100), 191(64), 179(45) | C16H17O9 | 1.4 | 11.0 | neochlorogenic acid |
5 | 3.5 | 553.1929 | - | 391(100), 195(21) | C26H33O13 | −0.4 | 27.4 | unidentified hexoside (lignan) |
6 | 4.2 | 697.2346 553.1916 | - - | 373(100), 535(14), 181(11) 391(100), 195(62) | C32H41O17 C26H33O13 | 0.4 1.9 | 15.4 118.8 | hydroxypinoresinol di-hexoside unidentified hexoside (lignan) |
7 | 5.0 | 681.2390 | - | 357(100) | C32H41O16 | 1.5 | 2.6 | pinoresinol di-hexoside |
8 | 5.5 | 637.2348 | - | 197(100), 221(52), 341(31) | C27H41O17 | 0.2 | 10.4 | kanokoside C isomer |
9 | 5.7 | 535.1814 | - | 373(100), 181(45) | C26H31O12 | 1.4 | 4.8 | hydroxypinoresinol hexoside |
10 | 6.1 | 493.2285 | - | 493(100), 331(47) | C22H37O12 | 1.1 | 16.2 | rhodioloside isomer |
11 | 7.3 | 519.1869 | - | 357(100), 151(8) | C26H31O11 | 0.6 | 7.1 | pinoresinol hexoside |
12 | 7.8 | 609.1822 457.1709 | - - | 301(100) 293(100) | C28H33O15 C21H29O11 | 0.5 1.4 | 22.0 76.6 | hesperidin isomer unidentified |
13 | 8.5 | 345.1552 347.1708 | - - | 345(100) 347(100) | C16H25O8 C16H27O8 | 0.7 1.1 | 4.4 30.1 | uidentified monoterpene hexoside (iridoid) uidentified monoterpene hexoside (iridoid) |
14 | 8.9 | 477.2339 | - | 477(100), 315(35) | C22H37O11 | 0.5 | 6.4 | unidentified monoterpene diglycoside |
15 | 10.8 | 573.2553 | - | 573(100), 231(4) | C27H41O13 | −0.1 | 2.3 | unidentified |
16 | 15.3 | 249.1488 | - | 249(100), 163(4) | C15H21O3 | 3.4 | 0.7 | valerenolic acid |
17 | 18.8 | 291.1592 | - | 291(100), 249(19) | C17H23O4 | 3.4 | 3.1 | acetylvalerenolic acid |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 197.0458 | - | 179(53), 135(24), 123(23), 195(6), 151(4) | C9H9O5 | −1.3 | 10.2 | danshensu isomer |
2 | 2.8 | 325.0933 | - | 179(100), 135(14) | C15H17O8 | −1.9 | 11.8 | caffeic acid-deoxyhexoside |
3 | 3.9 | 389.1789 | + | 227(100), 209(98), 191(56), 131(12) | C18H29O9 | 4.3 | 13.8 | unidentified |
4 | 4.1 | 355.1041 583.2047 | - - | 295(100), 265(51), 160(17), 193(16), 175(10) 373(100), 361(98), 298(58), 295(33), 313(27) | C16H19O9 C27H35O14 | −1.9 −2.5 | 19.8 12.4 | ferulic acid-hexoside unidentified |
5 | 4.5 | 493.0628 | - | 299(100), 271(50), 241(9) | C21H17O14 | −0.9 | 12.2 | unidentified |
6 | 4.6 | 227.1275 | + | 209(100), 191(87), 149(55), 167(43), 131(41) | C12H19O4 | 1.4 | 0.6 | unidentified |
7 | 5.7 | 461.0731 | - | 285(100), 255(33) | C21H17O12 | −1.2 | 1.5 | luteoline-oxyhexoside |
8 | 5.9 | 593.1522 447.0938 | - - | 285(100), 339(12), 255(5) 284(100), 256(7) | C27H29O15 C21H19O11 | −1.7 −1.1 | 6.5 2.4 | luteoline-hexoside-deoxyhexoside luteoline-hexoside |
9 | 6.4 | 551.1770 | - | 235(100), 533(88), 295(69), 160(64) | C26H31O13 | 0.1 | 20.5 | unidentified |
10 | 6.8 | 577.1200 | - | 269(100) | C26H25O15 | −0.2 | 11.6 | apigenin-hexoside-deoxyhexoside |
11 | 7.0 | 445.0779 | - | 269(100) | C21H17O11 | −0.6 | 9.0 | apigenin-oxyhexoside |
12 | 7.1 | 431.0984 | - | 268(100) | C21H19O10 | 0.0 | 3.3 | apigenin-hexoside |
13 | 7.2 | 359.0768 | - | 161(100), 197(77), 179(32) | C18H15O8 | 1.1 | 4.3 | rosmarinic acid |
14 | 7.3 | 555.1141 | 359(100), 161(22), 135(16), 193(14) | C27H23O13 | 0.7 | 7.9 | salvianolic acid K isomer | |
15 | 7.5 | 475.0881 | - | 284(100), 299(61) | C22H19O12 | 0.2 | 24.7 | hispiludin/diosmetin-oxyhexoside |
16 | 7.7 | 463.1224 609.1771 | + + | 301(100) 301(100), 463(4) | C22H23O11 C35H29O10 | 2.3 −2.7 | 8.8 44.0 | kaempferide-hexoside kaempferide-hexoside-deoxyhexoside |
17 | 8.2 | 769.1637 | - | 285(100), 255(26), 575(4) | C36H33O19 | −2.1 | 22.5 | luteolin-oxyhexoside-pentoside-ferulic acid |
18 | 9.3 | 753.1679 621.1842 | - | 269(100), 486(7), 193(4) 313(100), 297(44) | C36H33O18 C29H33O15 | −0.9 −2.7 | 18.8 14.2 | apigenin-oxyhexoside-pentoside-ferulic acid unidentified |
19 | 10.2 | 711.3968 | - | 503(100), 453(10) | C37H59O13 | −1.0 | 19.4 | unidentified |
20 | 12.4 | 493.1140 | - | 359(100), 323(40), 135(21), 179(16), 295(14) | C26H21O10 | 0.0 | 13.0 | unidentified |
21 | 13.0 | 327.2178 | - | 327(100), 211(12), 229(5), 171(3) | C18H31O5 | −0.3 | 6.2 | unidentified |
22 | 20.3 | 329.1760 | - | 285(100) | C20H25O4 | −0.4 | 13.3 | carnosol isomer |
23 | 22.9 | 331.1926 | - | 287(100) | C20H27O4 | −3.3 | 11.9 | carnosoic acid isomer |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 315.0719 329.0874 | - - | 315(100), 152(10) 167(100), 329(28) | C13H15O9 C14H17O9 | 0.7 1.2 | 3.8 18.3 | protocatechuoyl-hexoside vanilic acid-hexoside |
2 | 1.7 | 353.0877 | - | 191(100), 179(40), 135(30) | C16H17O9 | 0.2 | 1.6 | chlorogenic acid |
3 | 2.5 | 353.0875 | - | 191(100) | C16H17O9 | 1.0 | 7.7 | caffeoylqunic acid |
4 | 2.7 | 353.0874 | - | 191(100), 173(83) | C16H17O9 | 1.3 | 4.5 | caffeoylqunic acid |
5 | 3.7 | 355.1035 515.1201 | - - | 193(100), 149(44) 353(100), 191(59), 179(22), 135(12) | C16H19O9 C25H23O12 | 0.0 −1.2 | 5.5 34.5 | ferulic acid hexoside dicaffeoylqunic acid |
6 | 4.0 | 639.1564 | - | 313(100), 477(53), 270(36) | C28H31O17 | 0.4 | 11.4 | isorhamnetin-di-hexoside |
7 | 4.4 | 479.0834 609.1464 | - - | 317(100), 287(10), 165(6) 284(100), 447(38) | C21H19O13 C27H29O16 | −0.7 −0.4 | 15.1 28.5 | myricetin-oxyhexoside luteolin-di-hexoside |
8 | 4.7 | 367.1037 463.0883 | - - | 367(100), 173(19), 193(9), 134(7) 300(100), 227(8) | C17H19O9 C21H19O12 | −0.6 −0.2 | 6.5 9.7 | feruloylquinic acid quercetin- hexoside |
9 | 4.8 | 609.1469 | - | 301(100) | C27H29O16 | −1.3 | 5.3 | quercetin-hexoside-deoxyhexoside |
10 | 5.3 | 355.1039 | - | 193(100), 149(27) | C16H19O9 | −1.3 | 9.5 | ferulic acid hexoside |
11 | 5.9 | 593.1516 447.0937 | - - | 285(100) 284(100) | C27H29O15 C21H19O11 | −0.6 −1.0 | 5.0 3.7 | kaempferol-hexoside-deoxyhexoside kaempferol-hexoside |
12 | 6.2 | 493.1002 | - | 331(100), 287(83), 315(55) | C22H21O13 | −2.9 | 6.4 | petuletin-hexoside |
13 | 6.2 | 467.1679 | - | 323(100), 305(66), 189(25) | C26H27O8 | 6.8 | 28.6 | unidentified |
14 | 6.4 | 623.1624 515.1201 | - - | 315(100), 300(88), 271(28) 353(100), 191(36), 179(26), 135(11) | C28H31O16 C25H23O12 | −1.1 −1.3 | 29.1 5.4 | isorhamnetin-hexoside-deoxyhexoside dicaffeoylqunic acid |
15 | 6.5 | 681.1674 515.1202 | - | 313(100), 270(45), 519(27), 477(24) 353(100), 191(71), 179(25) | C30H33O18 C25H23O12 | −0.3 −1.3 | 13.3 25.4 | isorhamnetin-hexoside-acylhexoside dicaffeoylqunic acid |
16 | 7.1 | 431.0991 | - | 268(100) | C21H19O10 | −1.6 | 7.7 | apigenin-hexoside |
17 | 7.3 | 515.1204 445.1727 | - - | 353(100), 179(18), 191(15), 135(6) 445(100), 243(44), 183(6), 139(3) | C25H23O12 C20H29O11 | −1.7 −2.5 | 7.2 22.4 | dicaffeoylqunic acid unidetified |
18 | 7.5 | 479.1169 609.1773 | + + | 317(100) 301(100), 463(4) | C29H19O7 C35H29O10 | −9.1 −2.9 | 14.9 41.0 | isorhamnetin-hexoside kaempferide-hexoside-deoxyhexoside |
19 | 7.5 | 477.1045 711.2156 | - - | 477(100), 299(65), 271(63), 315(46) 711(100), 549(20), 433(10), 271(66) | C22H21O12 C32H39O18 | −1.4 −2.0 | 10.3 9.1 | isorhamnetin-hexoside unidentified-hexoside deoxyhexoside-pentoside (flavonoid) |
20 | 10.3 | 475.1216 | + | 271(100) | C23H23O11 | 3.9 | 7.4 | apigenin-acylhexoside |
21 | 10.6 | 519.1141 | - | 271(72), 299(46), 313(16), 151(7) | C24H23O13 | 0.5 | 1.9 | isorhamnetin-acylhexoside |
22 | 16.7 | 447.2009 | + | 219(100), 181(65), 231(30), 411(25), 358(23) | C24H31O8 | 1.0 | 8.8 | unidentified |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 305.0667 | - | 305(100), 219(12), 165(8) | C15H13O7 | −0.1 | 5.1 | gallocatechin isomer |
2 | 1.4 | 469.0054 | - | 425(100), 299(24) | C21H9O13 | −1.0 | 12.5 | valoneic acid dilacton isomer |
3 | 1.8 | 633.0743 | - | 301(100), 275(49), 229(23), 257(22) | C27H21O18 | −1.5 | 1.1 | strictinin isomer |
4 | 2.0 | 305.0672 591.1370 | - - | 305(100), 219(13), 261(8), 179(8) 285(100), 305(12) | C15H13O7 C27H27O15 | −1.9 −2.5 | 5.4 41.7 | gallocatechin isomer unidentified |
5 | 2.3 | 289.0722 633.0742 | - - | 289(100), 245(17), 203(9) 301(100), 275(41), 257(22), 229(11) | C15H13O6 C27H21O18 | −1.6 −1.4 | 1.1 35.6 | epicatechin strictinin isomer |
6 | 4.2 | 479.0846 | - | 316(100), 271(83) | C21H19O13 | −3.2 | 13.7 | myricetin-hexoside |
7 | 4.7 | 327.1458 | - | 327(100), 165(10) | C16H23O7 | −2.8 | 9.2 | unidentified |
8 | 5.0 | 449.0738 | - | 316(100), 271(68) | C20H17O12 | −2.8 | 4.1 | myricetin-pentoside |
9 | 5.2 | 463.0897 | - | 316(100), 271(91), 179(2) | C21H19O12 | −3.2 | 3.5 | myricetin-deoxyhexoside |
10 | 5.3 | 463.0898 | - | 271(100), 300(83) | C21H19O12 | −3.6 | 0.8 | quercetin-hexoside |
11 | 5.4 | 609.1474 | - | 271(100), 300(76) | C27H29O16 | −2.1 | 6.5 | quercetin-hexoside-deoxyhexoside |
12 | 6.1 | 433.0785 | - | 300(100), 271(86), 255(35), 243(18) | C20H17O11 | −2.0 | 5.8 | quercetin-pentoside |
13 | 6.2 | 449.1075 | + | 197(100), 287(34), 179(11) | C21H21O11 | 0.9 | 11.9 | unidentified |
14 | 6.5 | 577.1573 447.0944 | - - | 283(100), 255(57), 285(55), 431(24) 255(100), 227(87), 284(49) | C27H29O14 C21H19O11 | −1.8 −2.6 | 15.6 11.4 | kaempferol-di-deoxyhexoside kaempferol-hexoside |
15 | 6.7 | 773.1905 | + | 147(100), 319(18) | C36H37O19 | 2.4 | 44.2 | myricetin-di-deoxyhexoside-hexoside |
16 | 7.1 | 507.2219 | + | 219(100), 189(5) | C26H35O10 | 1.1 | 9.2 | unidentified |
17 | 7.8 | 523.2199 | - | 475(100), 327(17), 149(7) | C26H35O11 | −2.7 | 3.3 | unidentified |
18 | 7.9 | 627.1315 | + | 147(100), 319(58) | C30H27O15 | 4.8 | 37.4 | myricetin-hexoside-deoxyhexoside |
19 | 8.2 | 551.2145 | - | 329(100), 269(36), 314(35) | C27H35O12 | −1.9 | 7.2 | unidentified |
20 | 9.8 | 595.1432 | + | 147(100), 287(39) | C30H27O13 | 2.5 | 13.1 | unidentified |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 315.0715 | - | 315(100), 152(8) | C13H15O9 | 2.0 | 0.3 | protocatechuoyl—hexoside |
2 | 1.6 | 153.0187 | - | 153(100), 109(40) | C7H5O4 | 4.3 | 14.4 | protocatechuic acid |
3 | 2.0 | 577.1340 | - | 289(100), 407(72) | C30H25O12 | 2.1 | 4.2 | procyanidin isomer |
4 | 2.3 | 289.0712 | - | 289(100) | C15H13O6 | 1.8 | 2.3 | catechin |
5 | 2.5 | 353.0867 577.1341 | - - | 191(100), 353(6) 289(100), 407(71) | C16H17O9 C30H25O12 | 3.1 1.8 | 23.4 7.4 | chlorogenic acid procyanidin isomer |
6 | 2.9 | 577.1344 | - | 289(100), 407(72) | C30H25O12 | 1.2 | 13.7 | procyanidin isomer |
7 | 3.3 | 289.0714 | - | 289(100), 245(19), 203(9) | C15H13O6 | 1.3 | 5.2 | catechin |
8 | 4.8 | 609.1457 | - | 299(100), 271(63), 447(12) | C27H29O16 | 0.7 | 17.2 | quercetin-hexoside-deoxyhexoside |
9 | 5.2 | 593.1516 | - | 283(100), 285(43), 447(36) | C27H29O15 | −0.7 | 23.8 | kaempferol-hexoside-deoxyhexoside |
10 | 5.4 | 609.1469 | - | 271(100), 300(68) | C27H29O16 | −1.2 | 10.4 | quercetin-hexoside-deoxyhexoside |
11 | 5.5 | 465.1014 595.1634 | + + | 303(100) 287(100) | C21H21O12 C27H31O15 | 2.8 3.9 | 4.9 7.6 | quercetin-hexoside kaempferol-hexoside-deoxyhexoside |
12 | 5.7 | 449.1066 595.1634 | + + | 303(100) 303(100), 449(4) | C21H21O11 C27H31O15 | 2.7 2.8 | 3.8 2.4 | quercetin-deoxyhexoside quercetin-di-deoxyhexoside |
13 | 6.4 | 595.1640 | + | 287(100) | C27H31O15 | 3.0 | 5.3 | kaempferol-hexoside-deoxyhexoside |
14 | 6.6 | 449.1062 579.1690 711.2102 | + + + | 287(100) 287(100), 433(4) 287(100), 433(4) | C21H21O11 C27H31O14 C32H39O18 | 3.6 3.2 4.1 | 4.9 6.0 11.5 | kaempferol-hexoside kaempferol-di-deoxyhexoside kaempferol-di-deoxyhexoside-pentoside |
15 | 6.7 | 447.0937 | - | 271(100), 300(73) | C21H19O11 | −0.9 | 3.1 | quercetin-deoxyhexoside |
16 | 7.5 | 463.0886 | - | 301(100) | C21H19O12 | −0.8 | 15.0 | quercetin-hexoside |
17 | 9.8 | 595.1429 | + | 147(100), 287(34) | C30H27O13 | 2.9 | 24.8 | kaempferol-hexoside-deoxyhexoside-coumaric acid |
18 | 10.3 | 593.1854 | + | 285(100), 447(6) | C28H33O14 | 1.8 | 9.2 | unidentified-hexoside-deoxyhexoside (flavonoid) |
19 | 13.0 | 327.2174 | - | 327(100), 211(9) | C18H31O5 | 1.0 | 1.5 | unidentified |
20 | 14.2 | 329.2327 | - | 329(100), 211(17) | C18H33O5 | 2.1 | 3.2 | unidentified |
21 | 14.6 | 289.2375 | + | 235(100), 253(74), 217(64), 135(19), 161(14) | C16H33O4 | −0.7 | 8.0 | unidentified |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 373.1142 | - | 373(100), 211(92), 123(24) | C16H21O10 | −0.4 | 8.3 | geniposidic acid |
2 | 2.1 | 461.1672 | - | 461(100), 315(3) | C20H29O12 | −1.7 | 7.5 | decaffeoylacteoside |
3 | 3.3 | 451.2192 | - | 405(100), 179(8), 243(8), 167(7) | C20H35O11 | −1.7 | 4.6 | caryoptoside isomer |
4 | 3.9 | 813.1363 | - | 285(100), 637(23), 351(18), 461(15), | C33H33O24 | 0.6 | 7.9 | luteolin-tri-oxyhexide isomer |
5 | 4.1 | 637.1044 | - | 285(100), 351(89) | C27H25O18 | 0.4 | 20.9 | luteolin-di-oxyhexide isomer |
6 | 4.6 | 639.1941 | - | 639(100), 621(42), 161(28), 135(9), 447(7) | C29H35O16 | −1.6 | 15.8 | unidentified phenylethanoid |
7 | 4.7 | 639.1933 | - | 639(100), 621(59), 161(28), 133(16), 475(11) | C29H35O16 | −0.4 | 11.7 | unidentified phenylethanoid |
8 | 5.4 | 637.1046 | - | 285(100), 461(44) | C27H25O18 | 0.0 | 7.6 | luteolin-di-oxyhexoside isomer |
9 | 5.7 | 461.0721 989.1849 639.1935 | - - - | 285(100) 285(100), 461(12), 813(8) 639(100), 285(64), 161(41), 477(32), 461(21) | C21H17O12 C43H41O27 C29H35O16 | 1.1 −0.8 −0.7 | 6.8 43.6 8.1 | luteolin-oxyhexoside isomer unidentified luteolin derivative (flavonoid) unidentified phenylethanoid |
10 | 6.3 | 545.2231 477.1400 755.2407 | - - - | 545(100), 337(14), 235(10), 193(8) 477(100), 161(22), 133(11), 315(9), 179(2) 755(100), 161(21), 179(10), 593(10), 135(8) | C25H37O13 C23H25O11 C34H43O19 | 1.5 0.4 −0.4 | 10.4 9.5 12.5 | unidentified calceolarioside A isomer forsythoside isomer |
11 | 6.5 | 623.1980 639.1930 | - - | 623(100), 161(26), 461(12) 639(100), 161(30), 477(13), 133(6) | C29H35O15 C29H35O16 | 0.2 0.2 | 5.6 16.6 | verbascoside isomer unidentified phenylethanoid |
12 | 6.9 | 445.0779 755.2401 | - - | 269(100) 755(100), 161(24), 593(11), 133(8) | C21H17O11 C34H43O19 | −0.6 0.4 | 24.9 19.4 | apigenin-oxyhexoside forsythoside isomer |
13 | 7.1 | 623.1987 | - | 623(100), 161(17), 461(7), 133(5) | C29H35O15 | −0.9 | 7.0 | verbascoside isomer |
14 | 7.5 | 475.0877 | - | 274(100), 299(73) | C22H19O12 | 1.0 | 7.5 | kaempferide-oxyhexoside |
15 | 8.0 | 637.2138 | - | 637(100), 461(59), 175(41) | C30H37O15 | 0.0 | 15.9 | leucoseptoside A isomer |
16 | 8.0 | 621.1826 | 321(100), 323(21), 179(18), 487(14) | C29H33O15 | −0.2 | 4.8 | unidentified | |
17 | 8.4 | 629.2674 | - | 583(100), 421(21), 451(13), 289(9) | C26H45O17 | −1.9 | 5.9 | unidentified |
18 | 10.5 | 651.2304 | - | 651(100), 175(24), 160(12), 193(7), 475(5) | C31H39O15 | −1.5 | 12.5 | unidentified |
Peak | RT [min] | Molecular Ion [M-H]− | Ion Mode | MS/MS Fragments | Formula | Error [ppm] | mSigma | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 1.4 | 326.1246 | - | 164(100), 236(26), 147(20) | C15H20NO7 | −0.2 | 16.1 | phenylalanyl-hexoside |
2 | 2.5 | 417.1043 | - | 417(100), 152(8) | C17H21O12 | −1.0 | 4.6 | gentisic acid-dipentoside |
3 | 2.8 | 179.0357 361.0966 | - - | 179(100), 135(62) 361(100), 281(13), 171(7) | C9H7O4 C24H13N2O2 | −4.1 4.7 | 41.7 55.9 | caffeic acid unidentified |
4 | 3.5 | 227.0568 | - | 227(100), 139(22), 165(9) | C10H11O6 | −3.1 | 9.2 | unidentified |
5 | 3.7 | 623.0037 | - | C17H19O23S | 1.0 | 32.2 | flavonoid disulfo-hexoside | |
6 | 5.0 | 193.0479 | + | 193(100), 134(36), 178(36), 191(10) | C10H9O4 | 8.3 | 9.7 | scopoletin isomer |
7 | 5.2 | 425.0562 | - | 425(100), 297(88), 315(86), 241(75), 327(73) | C14H17O15 | 2.5 | 38.1 | unidentified |
8 | 5.9 | 636.9843 | - | C17H16O24S | −1.7 | 12.3 | flavonoid sulfo-glycoside | |
9 | 6.1 | 733.0950 | - | C28H29O21S | −3.1 | 37.4 | flavonoid sulfo-glycoside | |
10 | 6.3 | 541.0317 | - | 254(100), 285(33), 175(9) | C21H17O15S | −4.3 | 12.5 | theograndin I isomer |
11 | 6.4 | 433.1521 | - | 433(100), 403(86), 311(76), 299(58) | C22H25O9 | −3.9 | 5.5 | unidentified |
12 | 6.7 | 527.0522 639.1223 | - - | 285(100), 527(4), 213(4), 447(4) 301(100), 371(25), 299(24), 459(22) | C21H19O14S C27H27O18 | −4.1 −3.1 | 40.7 62.4 | flavonoid sulfo-glycoside unidentified-deoxyhexoside-hexoside (flavonoid) |
13 | 7.2 | 524.2881 | - | 524(100), 362(50) | C27H42NO9 | −3.1 | 25.3 | unidentified |
14 | 7.3 | unidentified | ||||||
15 | 7.6 | 557.0266 | - | 301(100), 254(77), 315(58), 271(42) | C21H17O16S | −4.2 | 21.0 | theograndin II isomer |
16 | 8.5 | 555.0464 | 254(100), 284(30), 299(24), 175(7) | C22H19O15S | −2.5 | 9.6 | flavonoid sulfo-oxyhexoside | |
17 | 8.9 | 541.0672 | - | 299(100), 284(68), 461(6) | C22H21O14S | −2.7 | 14.1 | flavonoid sulfo-hexoside |
18 | 8.9 | 541.0310 | - | 285(100), 254(67), 461(22) | C21H17O15S | −3.1 | 34.2 | flavonoid sulfo-oxyhexoside |
19 | 9.1 | 571.0411 | - | 300(100), 254(79), 315(46), 491(23) | C22H19O16S | −2.0 | 24.2 | flavonoid sulfo-oxyhexoside |
20 | 9.4 | 307.0731 | - | 233(100), 205(76), 263(75), 191(9) | C17H11N2O4 | −2.2 | 2.1 | unidentified |
21 | 10.5 | 475.0896 | - | C22H19O12 | −3.1 | 56.1 | unidentified | |
22 | 11.4 | 555.0469 | - | 254(100), 284(80), 299(71), 475(35), 175(40) | C22H19O15S | −3.4 | 1.8 | flavonoid sulfo-oxyhexoside |
23 | 18.1 | 311.2241 | - | C18H31O4 | −4.2 | 4.5 | unidentified | |
24 | 19.3 | 459.2037 | - | C25H31O8 | −2.8 | 24.7 | unidentified | |
25 | 19.8 | 459.2030 | - | C25H31O8 | −1.3 | 56.6 | unidentified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarno, M.; Kozłowska, M.; Ścibisz, I.; Kowalczyk, M.; Pawelec, S.; Stochmal, A.; Szleszyński, B. The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity. Appl. Sci. 2021, 11, 3898. https://doi.org/10.3390/app11093898
Ziarno M, Kozłowska M, Ścibisz I, Kowalczyk M, Pawelec S, Stochmal A, Szleszyński B. The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity. Applied Sciences. 2021; 11(9):3898. https://doi.org/10.3390/app11093898
Chicago/Turabian StyleZiarno, Małgorzata, Mariola Kozłowska, Iwona Ścibisz, Mariusz Kowalczyk, Sylwia Pawelec, Anna Stochmal, and Bartłomiej Szleszyński. 2021. "The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity" Applied Sciences 11, no. 9: 3898. https://doi.org/10.3390/app11093898
APA StyleZiarno, M., Kozłowska, M., Ścibisz, I., Kowalczyk, M., Pawelec, S., Stochmal, A., & Szleszyński, B. (2021). The Effect of Selected Herbal Extracts on Lactic Acid Bacteria Activity. Applied Sciences, 11(9), 3898. https://doi.org/10.3390/app11093898