Coupling High-Resolution Numerical Weather Prediction and Computational Fluid Dynamics: Auckland Harbour Case Study
Abstract
:Featured Application
Abstract
1. Introduction
- How accurately does a very high-resolution (i.e., sub-km) NWP model(s) predict such a short-lasting extreme wind event?
- What are the effects, i.e., wind speed-ups, of the Auckland Harbour Bridge structure itself on the local airflow and is it feasible to couple detailed CFD models with the Auckland Model to produce bridge-specific gust forecasts?
2. Methods and Data
3. Results
3.1. 333-m NWP Model Validation
3.2. CFD Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Vos, P.; van Heijst, G.J.F.; Janssen, W.D.; van Hooff, T.; Montazeri, H.; Timmermans, H.J.P. CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Build. Environ. 2015, 83, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban Physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Takemi, T.; Haruyasu, N. Coupling of WRF and building-resolving urban CFD models for analysis of strong winds over an urban area. In Proceedings of the 14th Conference on Mesoscale Processes, American Meteorological Society, Los Angeles, CA, USA, 31 July–1 August 2011. [Google Scholar]
- Kadaverugu, R.; Sharma, A.; Matli, C.; Biniwale, R. High Resolution Urban Air Quality Modeling by Coupling CFD and Mesoscale Models: A Review. Asia-Pac. J. Atmos. Sci. 2019, 55, 539–556. [Google Scholar] [CrossRef]
- Baik, J.-J.; Park, S.-B.; Kim, J.-J. Urban Flow and Dispersion Simulation Using a CFD Model Coupled to a Mesoscale Model. J. Appl. Meteorol. Climatol. 2009, 48, 1667–1681. [Google Scholar] [CrossRef]
- Liu, Y.S.; Miao, S.G.; Zhang, C.L.; Cui, G.X.; Zhang, Z.S. Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. J. Wind Eng. Ind. Aerodyn. 2012, 107–108, 106–117. [Google Scholar] [CrossRef]
- Durán, P.; Meiβner, C.; Casso, P. A new meso-microscale coupled modelling framework for wind resource assessment: A validation study. Renew. Energy 2020, 160, 538–554. [Google Scholar] [CrossRef]
- Piroozmand, P.; Mussetti, G.; Allegrini, J.; Mohammadi, M.H.; Akrami, E.; Carmeliet, J. Coupled CFD framework with mesoscale urban climate model: Application to microscale urban flows with weak synoptic forcing. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104059. [Google Scholar] [CrossRef]
- Li, L.; Chan, P.W. Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation. Meteorol. Z. 2012, 21, 183–192. [Google Scholar] [CrossRef]
- Safaei Pirooz, A.A.; Li, Y.F.; Flay, R.G.J. Numerical and wind-tunnel investigation of wind flow over urban areas. Struct. Eng. Soc. N. Z. (SESOC) J. 2020, 33, 47–56. [Google Scholar]
- Miao, Y.; Liu, S.; Chen, B.; Zhang, B.; Wang, S.; Li, S. Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci. 2013, 30, 1663–1678. [Google Scholar] [CrossRef]
- Kwak, K.H.; Baik, J.J.; Ryu, Y.H.; Lee, S.H. Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models. Atmos. Environ. 2015, 100, 167–177. [Google Scholar] [CrossRef]
- Blocken, B.; Janssen, W.D.; van Hooff, T. CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environ. Modell. Softw. 2012, 30, 15–34. [Google Scholar] [CrossRef]
- Montelpare, S.; D’Alessandro, V.; Lops, C.; Costanzo, E.; Ricci, R. A Mesoscale-Microscale approach for the energy analysis of buildings. J. Phys. Conf. Ser. 2019, 1224, 01202. [Google Scholar] [CrossRef]
- Li, S.; Sun, X.; Zhang, R.; Zhang, C. A Feasibility Study of Simulating the Micro-Scale Wind Field for Wind Energy Applications by NWP/CFD Model with Improved Coupling Method and Data Assimilation. Energies 2019, 12, 2549. [Google Scholar] [CrossRef] [Green Version]
- Temel, O.; Bricteux, L.; van Beeck, J. Coupled WRF-OpenFOAM study of wind flow over complex terrain. J. Wind Eng. Ind. Aerodyn. 2018, 174, 152–169. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Germano, N.; Lops, C.; Montelpare, S.; Camata, G.; Ricci, R. Determination of Wind Pattern Inside an Urban Area through a Mesoscale-Microscale Approach. Math. Modell. Eng. Probl. 2020, 7, 515–519. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Univ. Corp. Atmos. Res. 1994. [Google Scholar] [CrossRef]
- CD-Adapco, STAR-CCM+ 11.0 User Guide; CD-Adapco Inc.: Melville, NY, USA, 2016.
- Tewari, M.; Kusaka, H.; Chen, F.; Coirier, W.J.; Kim, S.; Wyszogrodzki, A.A.; Warner, T.T. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos. Res. 2010, 96, 656–664. [Google Scholar] [CrossRef]
- Abiven, C. Mesoscale & CFD coupling for wind energy yield prediction. In European Wind Energy Conference and Exhibition (EWEC); WindEurope: Vienna, Austria, 2013; Volume 2, pp. 1322–1325. [Google Scholar]
- Li, L.; Liu, Y.; Yang, Y.; Han, S. Short-term wind speed forecasting based on CFD pre-calculated flow fields. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2013, 33, 27–32. [Google Scholar]
- Ke, S.; Dong, Y.; Zhu, R.; Wang, T. Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine. Wind Struct. Int. J. 2020, 30, 433–450. [Google Scholar] [CrossRef]
- Takemi, T.; Ito, R. Benefits of high-resolution downscaling experiments for assessing strong wind hazard at local scales in complex terrain: A case study of Typhoon Songda (2004). Prog. Earth Planet. Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Stuff. Auckland Harbour Bridge Chaos: Tipped Truck Causes Gridlock on Motorways. 2020. Available online: https://www.stuff.co.nz/national/300110727/auckland-harbour-bridge-chaos-tipped-truck-causes-gridlock-on-motorways (accessed on 26 April 2021).
- Boutle, I.A.; Finnenkoetter, A.; Lock, A.P.; Wells, H. The London Model: Forecasting fog at 333 m resolution. Q. J. R. Meteorol. Soc. 2016, 142, 360–371. [Google Scholar] [CrossRef]
- Bush, M.; Allen, T.; Bain, C.; Boutle, I.; Edwards, J.; Finnenkoetter, A.; Franklin, C.; Hanley, K.; Lean, H.; Lock, A.; et al. The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1. Geosci. Model Dev. 2020, 13, 1999–2029. [Google Scholar] [CrossRef] [Green Version]
- Vosper, S.; Carter, E.; Lean, H.; Lock, A.; Clark, P.; Webster, S. High resolution modelling of valley cold pools. Atmos. Sci. Let. 2013, 14, 193–199. [Google Scholar] [CrossRef]
- Smith, D.K.E.; Renfew, I.A.; Dorling, S.R.; Price, J.D.; Boutle, I.A. Sub-km scale numerical weather prediction model simulations of radiation fog. Q. J. R. Meteorol. Soc. 2021, 147, 746–763. [Google Scholar] [CrossRef]
- Walters, D.; Boutle, I.; Brooks, M.; Melvin, T.; Stratton, R.; Vosper, S.; Wells, H.; Williams, K.; Wood, A.N.; Bushell, A.; et al. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef] [Green Version]
- Richards, P.J.; Norris, S.E. Appropriate boundary conditions for a pressure driven boundary layer. J. Wind Eng. Ind. Aerodyn. 2015, 142, 43–52. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Menter, F.R.; Carregal Ferreira, J.; Esch, T.; Konno, B. The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines. In Proceedings of the International Gas Turbine Congress, Tokyo, Japan, 2–7 November 2003; Gas Turbine Society of Japan (GTSJ): Tokyo, Japan, 2003. [Google Scholar]
- Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 2009, 23, 305–316. [Google Scholar] [CrossRef]
- AS/NZS 1170.2. Australia/New Zealand Standard, Structural Design Actions. Part 2: Wind Actions; Standards Australia International Ltd.: Sydney, Australia; Standards New Zealand: Wellington, New Zealand, 2011. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD, 1st ed.; DCW Industries: Cape Town, South Africa, 1993. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Grotjans, H.; Menter, F.R. Wall Functions for General Application CFD Codes. In Proceedings of the Fourth European Computational Fluid Dynamics Conference, Chichester, Athens, 7–11 September 1998; John Wiley Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Safaei Pirooz, A.A.; Flay, R.G.J. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling. Boundary-Layer Meteorol. 2018, 168, 213–246. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS CFX-Pre User’s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Popiolek, Z. Estimation of Mean Speed and Standard Deviation from CFD Prediction. Archit. Civ. Eng. Environ. 2008, 1, 141–146. [Google Scholar]
- Holmes, J.D. Wind Loading of Structures, 3rd ed.; Taylor & Francis Group: Abingdon, UK, 2015. [Google Scholar]
- Safaei Pirooz, A.A.; Flay, R.G.J.; Minola, L.; Azorin-Molina, C.; Chen, D. Effects of sensor response and moving average filter duration on maximum wind gust measurements. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104354. [Google Scholar] [CrossRef]
- Safaei Pirooz, A.A.; Flay, R.G.J. Effects of a Solid Tower and Urban Area on Measured Wind Data: Numerical and Wind-Tunnel Simulations. In Proceedings of the 15th International Conference on Wind Engineering, Beijing, China, 1–6 September 2019. [Google Scholar]
- Coleman, S.A.; Baker, C.J. The Reduction of Accident Risk for High Sided Road Vehicles in Cross Winds. J. Wind Eng. Ind. Aerodyn. 1992, 41–44, 2685–2695. [Google Scholar] [CrossRef]
- Dorigatti, F.; Sterling, M.; Rocchi, D.; Belloli, M.; Quinn, A.D.; Baker, C.J.; Ozkan, E. Wind tunnel measurements of crosswind loads on high sided vehicles over long span bridges. J. Wind Eng. Ind. Aerodyn. 2012, 107–108, 214–224. [Google Scholar] [CrossRef]
- Snæbjörnsson, J.T.; Baker, C.J.; Sigbjörnsson, R. Probabilistic assessment of road vehicle safety in windy environments. J. Wind Eng. Ind. Aerodyn. 2007, 95, 1445–1462. [Google Scholar] [CrossRef]
- Hemingway, R.; Robbins, J. Developing a hazard-impact model to support impact-based forecasts and warnings: The Vehicle OverTurning (VOT) Model. Meteorol. Appl. 2019, 27, e1819. [Google Scholar] [CrossRef] [Green Version]
Station Name | Latitude | Longitude | Height above the Ground |
---|---|---|---|
Auckland Aero | 37.00813 | 174.78873 | 10 m |
MOTAT EWS | 36.86297 | 174.71185 | 10 m |
Whenuapai | 36.79300 | 174.62400 | 10 m |
Sky Tower (SE anemometer) | 36.85004 | 174.76242 | 318 m |
Sky Tower (NW anemometer) | 36.85004 | 174.76242 | 318 m |
Max Gust Wind Speed | Mean Wind Speed | |||||
---|---|---|---|---|---|---|
Station Name | Correlation | Mean Bias | RMSE | Correlation | Mean Bias | RMSE |
Auckland Aero | 0.87 | 1.32 | 2.22 | 0.80 | 2.08 | 2.39 |
Whenuapai | 0.93 | 1.14 | 2.15 | 0.85 | 1.60 | 1.97 |
MOTAT | 0.81 | 1.24 | 2.91 | 0.76 | 0.62 | 1.45 |
Sky Tower (SE anemometer) | 0.47 | 3.73 | 5.44 | 0.15 | 2.57 | 5.14 |
Sky Tower (NW anemometer) | 0.65 | 4.67 | 5.42 | 0.49 | 1.03 | 2.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safaei Pirooz, A.A.; Moore, S.; Turner, R.; Flay, R.G.J. Coupling High-Resolution Numerical Weather Prediction and Computational Fluid Dynamics: Auckland Harbour Case Study. Appl. Sci. 2021, 11, 3982. https://doi.org/10.3390/app11093982
Safaei Pirooz AA, Moore S, Turner R, Flay RGJ. Coupling High-Resolution Numerical Weather Prediction and Computational Fluid Dynamics: Auckland Harbour Case Study. Applied Sciences. 2021; 11(9):3982. https://doi.org/10.3390/app11093982
Chicago/Turabian StyleSafaei Pirooz, Amir Ali, Stuart Moore, Richard Turner, and Richard G. J. Flay. 2021. "Coupling High-Resolution Numerical Weather Prediction and Computational Fluid Dynamics: Auckland Harbour Case Study" Applied Sciences 11, no. 9: 3982. https://doi.org/10.3390/app11093982
APA StyleSafaei Pirooz, A. A., Moore, S., Turner, R., & Flay, R. G. J. (2021). Coupling High-Resolution Numerical Weather Prediction and Computational Fluid Dynamics: Auckland Harbour Case Study. Applied Sciences, 11(9), 3982. https://doi.org/10.3390/app11093982