Glycemic Control Potential of Chemically Characterized Extract from Withania frutescens L. Roots in Severe Diabetes-Induced Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Plant Material
2.3. Extract Preparation
2.4. Experimental Animals
2.5. Preparation of the Test Solutions
2.6. Antidiabetic and Antihyperglycemic Activities
2.6.1. Experimental Diabetes Induction
2.6.2. Evaluation of the Antidiabetic Activity
2.6.3. Antihyperglycemic Activity Evaluation
2.7. Identification of Phytochemical Compounds in the Plant Extract
2.8. Statistical Analysis
3. Results and Discussion
3.1. Acute and Subacute Toxicity Study of Plant Extract
3.2. Evaluation of the Antidiabetic Potential of W. Frutescens Root Extract
3.3. Phytochemical Identification of Plant Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WFRE | Hydroethanol extract of Withania frutescens L. roots |
FBG | Fasting blood glucose |
BGL | Blood glucose level |
References
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2009, 32, S62–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013, 36, S67–S74. [Google Scholar] [CrossRef] [Green Version]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvascular and Macrovascular Complications in Diabetes Mellitus: Distinct or Continuum? Indian J. Endocrinol. Metab. 2016, 20, 546. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Shahar, J.; Hamdy, O. Medication and Exercise Interactions: Considering and Managing Hypoglycemia Risk: TABLE 1. Diabetes Spectr. 2015, 28, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Ata, A.; VAnil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, S.S.; Baruah, M.; Kalra, S.; Sehgal, V. Management of Diabetes Mellitus Type-2 in the Geriatric Population: Current Perspectives. J. Pharm. Bioall Sci. 2014, 6, 151. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-safi, I.; Bari, A.; Grafov, A.; Bousta, D. Ethnobotanical Survey about the Management of Diabetes with Medicinal Plants Used by Diabetic Patient in Region of Fez-Meknes, Morocco. Ethnobot. Res. Appl. 2020, 19, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Alqahtani, A.S.; Noman, O.M.; Alqahtani, A.M.; Ibenmoussa, S.; Bourhia, M. A Review on Ethno-Medicinal Plants Used in Traditional Medicine in the Kingdom of Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 2706. [Google Scholar] [CrossRef] [PubMed]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; El Moussaoui, A.; Cerruti, P.; Avella, M.; Grafov, A.; Bousta, D. Marketing and Legal Status of Phytomedicines and Food Supplements in Morocco. J. Complement. Integr. Med. 2020, 19, 1. [Google Scholar] [CrossRef]
- Moussaoui, A.E.; Jawhari, F.Z.; Bourhia, M.; Maliki, I.; Sounni, F.; Mothana, R.A.; Bousta, D.; Bari, A. Withania Frutescens: Chemical Characterization, Analgesic, Anti-Inflammatory, and Healing Activities. Open Chem. 2020, 18, 927–935. [Google Scholar] [CrossRef]
- Moussaoui, A.E.; Bourhia, M.; Jawhari, F.Z.; Es-Safi, I.; Ali, S.S.; Bari, A.; Mahmood, H.M.; Bousta, D.; Bari, A. Withania Frutescens. L Extract: Phytochemical Characterization and Acute and Repeated Dose 28-Day Oral Toxicity Studies in Mice. BioMed Res. Int. 2020, 2020, 1976298. [Google Scholar] [CrossRef]
- Xu, X.; Shan, B.; Liao, C.-H.; Xie, J.-H.; Wen, P.-W.; Shi, J.-Y. Anti-Diabetic Properties of Momordica Charantia L. Polysaccharide in Alloxan-Induced Diabetic Mice. Int. J. Biol. Macromol. 2015, 81, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Amrati, F.E.-Z.; Bourhia, M.; Saghrouchni, H.; Slighoua, M.; Grafov, A.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Bari, A.; Ibenmoussa, S. Caralluma Europaea (Guss.) NE Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions. Molecules 2021, 26, 636. [Google Scholar] [CrossRef]
- Carvalho, E.N.; Carvalho, N.A.; Ferreira, L.M. Experimental Model of Induction of Diabetes Mellitus in Rats. Acta Cir. Bras. 2003, 18, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.D.; Mattison, D.R. Treating the Placenta. In Clinical Pharmacology during Pregnancy; Elsevier: Amsterdam, The Netherlands, 2013; pp. 73–87. ISBN 978-0-12-386007-1. [Google Scholar]
- Akuodor, G.C.; Eban, L.K.; Ajoku, G.A.; Nwobodo, N.N.; Akpan, J.L.; Ezeokpo, B.C.; Nwadike, K.I.; Aja, D.O. Antidiabetic and Antihyperlipidemic Potential of Ethanol Extract of Salacia Lehmbachii Stem Bark in Alloxan-Induced Diabetic Rats. J. Basic Clin. Physiol. Pharmacol. 2019, 30, 239–244. [Google Scholar] [CrossRef]
- Khan, B.A.; Abraham, A.; Leelamma, S. Hypoglycemic Action of Murraya Koenigii (Curry Leaf) and Brassica Juncea (Mustard): Mechanism of Action. Indian J. Biochem. Biophys. 1995, 32, 106–108. [Google Scholar]
- Sikarwar, M.S.; Patil, M.B. Antidiabetic Activity of Crateva Nurvala Stem Bark Extracts in Alloxan-Induced Diabetic Rats. J. Pharm. Bioallied Sci. 2010, 2, 18. [Google Scholar] [CrossRef]
- Belayneh, Y.M.; Birru, E.M. Antidiabetic Activities of Hydromethanolic Leaf Extract of Calpurnia Aurea (Ait.) Benth. Subspecies Aurea (Fabaceae) in Mice. Evid.-Based Complement. Altern. Med. 2018, 2018, 3509073. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, D.S.; Ebbeling, C.B. The Carbohydrate-Insulin Model of Obesity: Beyond “Calories In, Calories Out”. JAMA Intern. Med. 2018, 178, 1098–1103. [Google Scholar] [CrossRef]
- Hatting, M.; Tavares, C.D.J.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin Regulation of Gluconeogenesis: Insulin Regulation of Gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef]
- Bourhia, M.; Bari, A.; Ali, S.S.; Benbacer, L. Phytochemistry and Toxicological Assessment of Bryonia Dioica Roots Used in North-African Alternative Medicine. Open Chem. 2019, 17, 1403–1411. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Zentella, M.L.; Hernández-Muñoz, R. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxidative Med. Cell. Longev. 2016, 2016, 3529149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of Acute Kidney Injury. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 463–493. [Google Scholar] [CrossRef] [Green Version]
- Osafo, N.; Obiri, D.D. Anti-Inflammatory and Anti-Anaphylactic Activity of Xylopic Acid Isolated from the Dried Fruit of Xylopia Aethiopica in Mice. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Ullah, K.; Sarker, M.M.R.; Khan, M.S.; Mustapha, M.S.; Ullah, M.K. Anti-Diabetic Activity of Compound “2-[(Trimethylsilyl) Oxy]-Methyl Ester (Cas) Methyl-o-Trimethyl-Silylsalicylate” Isolated from Pericampylus Glaucus (Lam) Merr in STZ-Induced Diabetic Rats. J. Basic Clin. Pharm. 2017, 8, 68–73. [Google Scholar]
Treatment | Bodyweight Development (mg/kg b.w) | Biochemical Parameter | |||||||
---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 7 | Day 14 | Day 21 | Day 28 | AST (U/L) | ALT (U/L) | Urea (g/L) | Creatinine mg/L | |
Normal control | 23.4 ± 3.3 | 24.7 ± 3.5 * | 25.3 ± 2.4 *** | 26.9 ± 3.3 *** | 27.2 ± 3.5 *** | 253 ± 33.73 *** | 45 ± 6.58 *** | 0.25 ± 0.04 ** | 3.3 ± 0.44 * |
Diab. Control | 23.9 ± 2.1 | 21.8 ± 3.2 | 20.2 ± 2.7 | 19.3 ± 2.4 | 17.8 ± 2.2 | 502 ± 48.85 | 134 ± 21.2 | 0.64 ± 0.06 | 5.9 ± 0.83 |
Diab. Glib. 2 mg | 24.4 ± 2.6 | 23.2 ± 1.6 | 24.3 ± 2.3 ** | 25.9 ± 2.5 *** | 25.8 ± 1.77 *** | 298 ± 25.66 *** | 77 ± 9.80 *** | 0.29 ± 0.04 *** | 4.3 ± 0.44 ** |
Diab. WFRE 200 mg/kg | 24.8 ± 2.2 | 24.0 ± 1.9 | 24.4 ± 1.8 ** | 25.0 ± 2.0 *** | 26.2 ± 2.2 *** | 243 ± 27.42 *** | 57 ± 7.26 *** | 0.35 ± 0.05 *** | 3.80 ± 0.46 *** |
Diab. WFRE 400 mg/kg | 23.9 ± 2.4 | 23.4 ± 2.3 | 24.1 ± 1.9 ** | 24.9 ± 2.2 *** | 26.4 ± 2.1 *** | 276 ± 23.01 *** | 52 ± 6.82 *** | 0.34 ± 0.04 *** | 3.70 ± 0.32 *** |
Peak | RT | Compound Name | Formula | Area (%) |
---|---|---|---|---|
1 | 015.087 | 3,3,6-dTrimethyl-1,4dheptadien-6-ol | C10H18O | 2.541 |
2 | 014.151 | Tricyclo [2.2.1.0(2,6)] d heptane 3-methanol, 2,3-dimethyl- | C10H16O | 1.141 |
3 | 013.280 | Bicyclo [3.1.0] hexan s3-one, 4-methyl-1-(1-methylethyl)-, [1S-(1α,4β,5α)]- | C10H16O | 2.351 |
4 | 012.983 | Bicyclo [2.2.1] heptan-2-ol, 1,7,7-trimethyl- | C10H18O | 4.841 |
5 | 012.782 | Bicyclo [3.1.1] eheptan-3ol,2,6,6-trimethyl-, (1α,2β,3α,5α)- | C10H18O | 11.82 |
6 | 011.525 | 2,6-Octadien 1-ol, 3,7-dimethyl-, (Z)- | C10H18O | 12.04 |
7 | 011.035 | 2,6-dOctadien-1 ol, 3,7-dimethyl-, (E)- | C10H18O | 11.41 |
8 | 010.931 | Benzenes, 1-ethyl 2,3-dimethyl | C10H14 | 01.26 |
9 | 010.790 | Benzene, e1-methyl 3-(1-methylethyl)- | C10H14 | 01.33 |
10 | 09.698 | Bicyclo [2.2.1] ehept-2 ene, 1,7,7-trimethyl- | C10H16 | 04.56 |
11 | 09.377 | Bicyclo [2.2.1] ehept-2-ene, 2,7,7-trimethyl- | C10H16 | 010.19 |
12 | 09.100 | Bicyclo [3.1.1] eheptane,6,6-dimethyl-2-methylene-,e (1S)- | C10H16 | 028.48 |
13 | 07.855 | Tricyclo [2.2.1.e0(2,6)] heptane 1,7,7-trimethyl- | C10H16 | 03.90 |
14 | 04.952 | MethanamineN,sN-di (2-trimethylsilyloxyethyl)- | C11H29NO2Si2 | 034.12 |
Total | 099.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Moussaoui, A.; Mechchate, H.; Bourhia, M.; Es-safi, I.; Salamatullah, A.M.; Alkaltham, M.S.; Alyahya, H.K.; Bousta, D.; Bari, A. Glycemic Control Potential of Chemically Characterized Extract from Withania frutescens L. Roots in Severe Diabetes-Induced Mice. Appl. Sci. 2021, 11, 3998. https://doi.org/10.3390/app11093998
El Moussaoui A, Mechchate H, Bourhia M, Es-safi I, Salamatullah AM, Alkaltham MS, Alyahya HK, Bousta D, Bari A. Glycemic Control Potential of Chemically Characterized Extract from Withania frutescens L. Roots in Severe Diabetes-Induced Mice. Applied Sciences. 2021; 11(9):3998. https://doi.org/10.3390/app11093998
Chicago/Turabian StyleEl Moussaoui, Abdelfattah, Hamza Mechchate, Mohammed Bourhia, Imane Es-safi, Ahmad Mohammad Salamatullah, Mohammed Saeed Alkaltham, Heba Khalil Alyahya, Dalila Bousta, and Amina Bari. 2021. "Glycemic Control Potential of Chemically Characterized Extract from Withania frutescens L. Roots in Severe Diabetes-Induced Mice" Applied Sciences 11, no. 9: 3998. https://doi.org/10.3390/app11093998
APA StyleEl Moussaoui, A., Mechchate, H., Bourhia, M., Es-safi, I., Salamatullah, A. M., Alkaltham, M. S., Alyahya, H. K., Bousta, D., & Bari, A. (2021). Glycemic Control Potential of Chemically Characterized Extract from Withania frutescens L. Roots in Severe Diabetes-Induced Mice. Applied Sciences, 11(9), 3998. https://doi.org/10.3390/app11093998