Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Isolation, and Morphological Identification of Alternaria Species
2.2. ITS rDNA
2.3. Mycotoxin Production and Extraction In Vitro
2.4. Pathogenicity Test
2.5. Preparation of Beetroot Extracts
2.6. Total Phenolic Content Determination
2.7. Effect of Beetroot Extracts on TeA and AME Production
2.8. HPLC Analysis
2.9. GC-MS Analysis of BME and BEE
2.10. Statistics Analysis
3. Results and Discussion
3.1. Morphological Identification
3.2. ITS Sequence Analysis
3.3. Mycotoxin Production Ability
3.4. Pathogenicity Test
3.5. Total Phenolic Content of Beetroot
3.6. Effect of Beetroot Extracts on Alternaria Mycotoxins Production
3.7. GC-MS Analysis of Beetroot Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkhalek, A.; Al-Askar, A.A.; Behiry, S.I. Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci. Rep. 2020, 10, 16120. [Google Scholar] [CrossRef] [PubMed]
- Kabeil, S.S.; Amer, M.A.; Matarand, S.M.; El-Masry, M.H. In planta biological control of potato brown rot disease in Egypt. World J. Agric. Sci. 2008, 4, 803–810. [Google Scholar]
- Meena, M.; Samal, S. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol. Rep. 2019, 6, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Thomma, B.P.H.J. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria mycotoxins in food and feed: An overview. J. Food Qual. 2017, 2017, 1569748. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Han, X.; Li, F.; Zhang, L. Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui Province, China. Toxins 2016, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Shephard, G. Chromatographic separation techniques for determination of mycotoxins in food and feed. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed; Woodhead Publishing: Cambridge, UK, 2011; pp. 71–89. [Google Scholar]
- Chu, F.S. Mycotoxins: Toxicology, 2nd ed.; Caballer, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4096–4108. [Google Scholar]
- Siegel, D.; Merkel, S.; Koch, M.; Nehls, I. Quantification of the Alternaria mycotoxin tenuazonic acid in beer. Food Chem. 2010, 120, 902–906. [Google Scholar] [CrossRef]
- Scott, P.M.; Zhao, W.; Feng, S.; Lau, B.P.-Y. Alternaria toxins alternariol and alternariol monomethyl ether in grain foods in Canada. Mycotoxin Res. 2012, 28, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Asam, S.; Lichtenegger, M.; Liu, Y.; Rychlik, M. Content of the Alternaria mycotoxin tenuazonic acid in food commodities determined by a stable isotope dilution assay. Mycotoxin Res. 2011, 28, 9–15. [Google Scholar] [CrossRef]
- Lee, H.B.; Patriarca, A.; Magan, N. Alternaria in food: Ecophysiology, mycotoxin production and toxicology. Mycobiology 2015, 43, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.T.; Qian, Y.Z.; Zhang, P.; Dong, W.H.; Qi, Y.M.; Guo, H.T. Etiological role of Alternaria alternata in human esophageal cancer. Chin. Med. J. 1992, 105, 394. [Google Scholar]
- Georgiev, V.G.; Weber, J.; Kneschke, E.-M.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef]
- Kumar, S.; Brooks, M.S.-L. Use of red beet (Beta vulgaris L.) for Antimicrobial Applications—A critical review. Food Bioprocess Technol. 2018, 11, 17–42. [Google Scholar] [CrossRef]
- Motlagh, M.R.S.; Kaviani, B. Characterization of new Bipolaris spp.: The causal agent of rice brown spot dis-ease in the north of Iran. Int. J. Agric. Biol. 2008, 10, 638–642. [Google Scholar]
- Simmons, E.G. Alternaria: An Identification Manual: Fully Illustrated and with Catalogue Raisonné 1796–2007; CBS Fungal Biodiversity Centre: Utrecht, The Netherlands, 2007; ISBN 9789070351687. [Google Scholar]
- Abdelkhalek, A. Expression of tomato pathogenesis related genes in response to Tobacco mosaic virus. J. Anim. Plant Sci. 2019, 29, 1596–1602. [Google Scholar]
- Brzonkalik, K.; Herrling, T.; Syldatk, C.; Neumann, A. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata. Int. J. Food Microbiol. 2011, 147, 120–126. [Google Scholar] [CrossRef]
- Siciliano, I.; Ortu, G.; Gilardi, G.; Gullino, M.L.; Garibaldi, A. Mycotoxin production in liquid culture and on plants infected with Alternaria spp. isolated from rocket and cabbage. Toxins 2015, 7, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Sadhasivam, S.; Shapiro, O.H.; Ziv, C.; Barda, O.; Zakin, V.; Sionov, E. Synergistic inhibition of mycotoxigenic fungi and mycotoxin production by combination of pomegranate peel extract and azole fungicide. Front. Microbiol. 2019, 10, 1919. [Google Scholar] [CrossRef] [Green Version]
- Okla, M.K.; Alamri, S.A.; Salem, M.Z.; Ali, H.M.; Behiry, S.I.; Nasser, R.A.; Alaraidh, I.A.; Al-Ghtani, S.M.; Soufan, W. Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves/twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.Z.; Behiry, S.I.; El-Hefny, M. Inhibition of Fusarium culmorum, Penicillium chrysogenum and Rhizoctonia solani by n-hexane extracts of three plant species as a wood-treated oil fungicide. J. Appl. Microbiol. 2019, 126, 1683–1699. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Behiry, S.I.; Al-Askar, A.A. Bacillus velezensis PEA1 inhibits Fusarium oxysporum growth and induces systemic resistance to Cucumber Mosaic virus. Agronomy 2020, 10, 1312. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Nagrale, D.T.; Gaikwad, A.P.; Sharma, L. Morphological and cultural characterization of Alternaria alternata (Fr.) Keissler blight of gerbera (Gerbera jamesonii H. Bolus ex JD Hook). J. Appl. Nat. Sci. 2013, 5, 171–178. [Google Scholar] [CrossRef]
- Goyal, P.; Chahar, M.; Mathur, A.P.; Kumar, A.; Chattopadhyay, C. Morphological and cultural variation in different oilseed Brassica isolates of Alternaria brassicae from different geographical regions of India. Indian J. Agric. Sci. 2011, 81, 1052. [Google Scholar]
- Fajarningsih, N.D. Internal Transcribed Spacer (ITS) as DNA barcoding to identify fungal species: A review. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2016, 11, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Meena, M.; Swapnil, P.; Upadhyay, R.S. Isolation, characterization and toxicological potential of Alternaria-mycotoxins (TeA, AOH and AME) in different Alternaria species from various regions of India. Sci. Rep. 2017, 7, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertekin, F.B.; Nazli, K.; Guzel, S.Z.B. Antioxidant activity and phenolic acid content of selected vegetable broths. Czech J. Food Sci. 2017, 35, 469–475. [Google Scholar] [CrossRef]
- Babagil, A.; Tasgin, E.; Nadaroglu, H.; Kaymak, H.C. Antioxidant and antiradical activity of beetroot (Beta vulgaris L. var. conditiva Alef.) grown using different fertilizers. J. Chem. 2018, 2018, 7101605. [Google Scholar] [CrossRef] [Green Version]
- Derbalah, A.; El-Mahrouk, M.; El-Sayed, A. Efficacy and safety of some plant extracts against tomato early blight disease caused by Alternaria solani. Plant Pathol. J. 2011, 10, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Zaker, M.; Mosallanejad, H. Antifungal activity of some plant extracts on Alternaria alternata, the causal agent of Alternaria leaf spot of potato. Pak. J. Biol. Sci. 2010, 13, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Tegegne, G.; Pretorius, J.; Swart, W. Antifungal properties of Agapanthus africanus L. extracts against plant pathogens. Crop. Prot. 2008, 27, 1052–1060. [Google Scholar] [CrossRef]
- Lindsey, K.L.; Van Staden, J.; Eloff, J.N. Growth inhibition of plant pathogenic fungi by extracts of Allium sativum and Tulbaghia violacea. S. Afr. J. Bot. 2004, 70, 671–673. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.D.C.; Alves, E.; Camargos, R.B.; Oliveira, D.F.; Scolforo, J.R.S.; De Carvalho, D.A.; Batista, T.R.S. Plant extracts to control Alternaria alternata in Murcott tangor fruits. Rev. Iberoam. Micol. 2011, 28, 173–178. [Google Scholar] [CrossRef]
- De Lima, C.B.; Rentschler, L.L.A.; Bueno, J.T.; Boaventura, A.C. Plant extracts and essential oils on the control of Alternaria alternata, Alternaria dauci and on the germination and emergence of carrot seeds (Daucus carota L.). Ciênc. Rural 2016, 46, 764–770. [Google Scholar] [CrossRef] [Green Version]
- Al-Huqail, A.A.; Behiry, S.I.; Salem, M.Z.M.; Ali, H.M.; Siddiqui, M.H.; Salem, A.Z.M. Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) HL Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 2019, 24, 700. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Control of infection of tomato fruits by Alternaria and mycotoxin production using plant extracts. Eur. J. Plant Pathol. 2016, 145, 363–373. [Google Scholar] [CrossRef]
- Youssef, N.H. Role of chitosan and some plant parts wraps as alternative interior edible coat surrounding semi-hard cheese in inhibiting fungal growth and mycotoxins migration. Res. Crop. 2019, 20, 869–879. [Google Scholar]
- Bluma, R.; Amaiden, M.R.; Etcheverry, M. Screening of Argentine plant extracts: Impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section Flavi. Int. J. Food Microbiol. 2008, 122, 114–125. [Google Scholar] [CrossRef]
- Bluma, R.V.; Etcheverry, M.G. Application of essential oils in maize grain: Impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Food Microbiol. 2008, 25, 324–334. [Google Scholar] [CrossRef]
- Garcia, D.; Garcia-Cela, E.; Ramos, A.J.; Sanchis, V.; Marín, S. Mould growth and mycotoxin production as affected by Equisetum arvense and Stevia rebaudiana extracts. Food Control 2011, 22, 1378–1384. [Google Scholar] [CrossRef]
- Abdel-Shafi, S.; Al-Mohammadi, A.-R.; Sitohy, M.; Mosa, B.; Ismaiel, A.; Enan, G.; Osman, A. Antimicrobial activity and chemical constitution of the crude, phenolic-rich extracts of Hibiscus sabdariffa, Brassica oleracea and Beta vulgaris. Molecules 2019, 24, 4280. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.W.; Nash, P.; Buttar, H.S.; Griffiths, K.; Singh, R.; De Meester, F.; Horiuchi, R.; Takahashi, T. The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants 2017, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Kaur, C.; Kapoor, H.C. Antioxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Gilby, A.R.; Few, T.L.A.V. Lysis of protoplasts of Micrococcus lysodeikticus by ionic detergents. J. Gen. Microbiol. 1960, 23, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hueck, H.J.; Adema, D.M.M.; Wiegmann, J.R. Bacteriostatic, fungistatic, and algistatic activity of fatty nitrogen compounds. Appl. Microbiol. 1966, 14, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Seidel, V.; Taylor, P.W. In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int. J. Antimicrob. Agents 2004, 23, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Ai, H.-W.; Kang, Y.-X.; Cao, Y.; Zheng, C.-J. Antifungal properties and chemical analysis of essential oil from Vitex negundo seeds. Br. J. Pharm. Res. 2014, 4, 541–548. [Google Scholar] [CrossRef]
- Prieto-Blanco, M.C.; López-Mahía, P.; Prada-Rodríguez, D. Analysis of residual products in benzyl chloride used for the industrial synthesis of quaternary compounds by liquid chromatography with diode-array detection. J. Chromatogr. Sci. 2009, 47, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Basaran, P. Inhibition effect of belzalkonium chloride treatment on growth of common food contaminating fungal species. J. Food Sci. Technol. 2011, 48, 515–519. [Google Scholar] [CrossRef] [Green Version]
- Peters, D.; Omeodu, S. Effect of ethanolic leave extract of Phyllantus amarus on carbon tetrachloride (CCl4) induced hepatotoxicity in albino rats. J. Appl. Sci. Environ. Manag. 2016, 19, 803. [Google Scholar] [CrossRef] [Green Version]
- Abdelkhalek, A.; Salem, M.Z.; Kordy, A.M.; Salem, A.Z.; Behiry, S.I. Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microb. Pathog. 2020, 147, 104383. [Google Scholar] [CrossRef]
- Ashmawy, N.A.; Salem, M.Z.M.; El Shanhorey, N.; Al-Huqail, A.; Ali, H.M.; Behiry, S.I. Eco-friendly wood-biofungicidal and antibacterial activities of various Coccoloba uvifera L. leaf extracts: HPLC analysis of phenolic and flavonoid compounds. BioResources 2020, 15, 4165–4187. [Google Scholar]
- Abdelkhalek, A.; Salem, M.Z.M.; Hafez, E.; Behiry, S.I.; Qari, S.H. The phytochemical, antifungal, and first report of the antiviral properties of Egyptian Haplophyllum tuberculatum extract. Biology 2020, 9, 248. [Google Scholar] [CrossRef]
- Ashmawy, N.A.; Behiry, S.I.; Al-Huqail, A.A.; Ali, H.M.; Salem, M.Z.M. Bioactivity of selected phenolic acids and hexane extracts from Bougainvilla spectabilis and Citharexylum spinosum on the growth of Pectobacterium carotovorum and Dickeya solani bacteria: An opportunity to save the environment. Processes 2020, 8, 482. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Behiry, S.I.; Ali, H.M.; EL-Hefny, M.; Salem, M.Z.M.; Ashmawy, N.A. Phytochemical compounds of branches from P. halepensis oily liquid extract and S. terebinthifolius essential oil and their potential antifungal activity. Processes 2020, 8, 330. [Google Scholar] [CrossRef] [Green Version]
- Ałtyn, I.; Twarużek, M. Mycotoxin contamination concerns of herbs and medicinal plants. Toxins 2020, 12, 182. [Google Scholar] [CrossRef] [Green Version]
- Thipe, V.C.; Bloebaum, P.; Khoobchandani, M.; Karikachery, A.R.; Katti, K.K.; Katti, K.V. Green nanotechnology: Nanoformulations against toxigenic fungi to limit mycotoxin production. In Nanomycotoxicology; Academic Press: Cambridge, MA, USA, 2020; pp. 155–188. [Google Scholar]
- Kumar, P.P.; Kumaravel, S.; Lalitha, C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr. J. Biochem. Res. 2010, 4, 191–195. [Google Scholar]
- Rahuman, A.; Gopalakrishnan, G.; Ghouse, B.; Arumugam, S.; Himalayan, B. Effect of Feronia limonia on mosquito larvae. Fitoterapia 2000, 71, 553–555. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Awa, E.P.; Ibrahim, S.; Ameh, D.A. GC/MS analysis and antimicrobial activity of diethyl ether fraction of methanolic extract from the stem bark of Annona senegalensis Pers. Int. J. Pharm. Sci. Res. 2012, 3, 4213. [Google Scholar]
- Yu, F.-R.; Lian, X.-Z.; Guo, H.-Y.; McGuire, P.M.; Li, R.-D.; Wang, R.; Yu, F.-H. Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. J. Pharm. Pharm. Sci. 2005, 8, 528–535. [Google Scholar] [PubMed]
- Li, X.; Wang, X.; Shi, X.; Wang, B.; Li, M.; Wang, Q.; Zhang, S. Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum. Processes 2020, 8, 1674. [Google Scholar] [CrossRef]
- Sivakumar, R.; Jebanesan, A.; Govindarajan, M.; Rajasekar, P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 706–710. [Google Scholar] [CrossRef] [Green Version]
- Santra, H.K.; Banerjee, D. Natural products as fungicide and their role in crop protection. In Natural Bioactive Products in Sustainable Agriculture; Springer Nature: Singapore, 2020; pp. 131–219. [Google Scholar]
- Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med Pharmacol. Sci. 2011, 15, 775–780. [Google Scholar] [PubMed]
Collection Sites | Geographical Data | Fungal Code | Mycotoxin Detection | |
---|---|---|---|---|
Tenuazonic Acid (TeA) ng/g | Alternariol Monomethyl Ether (AME) ng/g | |||
Beban, Kom Hamada, El Beheira Governorate | 30°46′00.4′′ N 30°39′46.8′′ E | KH3 | 133,200 a | 138,320 c |
Demeito, Kom Hamada, El Beheira Governorate | 30°47′19.5′′ N 30°44′07.0′′ E | KH1 | 22,560 b | 94,340 g |
An Nubariyah, Gharb El Noubareya, El Beheira Governorate | 30°40′13.5′′ N 30°02′53.0′′ E | NO1 | 24,000 b | 114,000 f |
Al Natron Valley, El Beheira Governorate | 30°33′12.0′′ N 30°18′04.9′′ E | W2 | 27,768 b | 118,800 e |
Quora Kheriguine, Gharb El Noubareya Quora Kheriguine, El Beheira Governorate | 30°42′36.7′′ N 29°54′43.2′′ E | NO3 | 49,270 ab | 212,000 a |
Al Hamam Desert, Matrouh Governorate | 30°44′56.2′′ N 29°36′50.6′′ E | Alam1 | 38,160 b | 147,278 b |
Al Natron Valley, El Beheira Governorate | 30°34′40.6′′ N 29°58′43.1′′ E | W3 | 43,680 b | 131,560 d |
L.S.D.0.05 | 40.2411 | 68.04136 |
Isolate | Conidial Length (μm) | Conidial Width (μm) | L/W Ratio | Pathogenicity | Accession Number |
---|---|---|---|---|---|
KH1 | 27.32 | 5.30 | 5.15 | High | MN592776 |
KH3 | 34.45 | 4.68 | 7.36 | Moderate | MN592775 |
NO1 | 30.58 | 5.34 | 5.73 | Moderate | MN592772 |
NO3 | 35.48 | 6.10 | 5.82 | High | MN592771 |
W2 | 29.6 | 7.20 | 4.11 | Low | MN592773 |
W3 | 32.77 | 6.89 | 4.76 | High | MN592774 |
Alam1 | 26.75 | 4.83 | 5.54 | Low | MN592777 |
Retention Time | Compound Name | Area (%) | Molecular Formula | Molecular Weight |
---|---|---|---|---|
3.95 | Benzyl chloride | 7.49 | C7H7Cl | 126 |
10.07 | Dodecanal (Tetradecanal) | 0.71 | C12H24O | 184 |
11.27 | 1-Chloroundecane | 0.42 | C11H23Cl | 190 |
11.37 | 1-Dodecanol | 1.17 | C12H26O | 186 |
11.95 | 1-Dodecanamine, n,n-dimethyl | 43.75 | C14H31N | 213 |
14.00 | Tetradecanal | 0.49 | C14H28O | 212 |
15.22 | 1-Hexadecanol | 0.67 | C16H34O | 242 |
15.71 | 2-Propanone | 18.50 | C3H6O | 58 |
19.55 | Hexadecanoic acid, methyl ester (Palmitic acid, methyl ester) | 3.02 | C17H34O2 | 270 |
20.24 | n-Hexadecanoic acid | 1.93 | C16H32O2 | 256 |
22.22 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 1.89 | C19H34O2 | 294 |
22.32 | 9-Octadecenoic acid (Z)-, methyl ester | 2.47 | C19H36O2 | 296 |
22.49 | 3-(N-Benzyl-N-methylamino)-1,2-propanediol | 10.52 | C11H17NO2 | 195 |
22.73 | Octadecanoic acid, methyl ester (Methyl stearate) | 0.53 | C19H38O2 | 298 |
22.99 | 9-Octadecenoic acid (z)- | 2.32 | C18H34O2 | 282 |
25.54 | 2-Methylenebrexane | 3.22 | C10H14 | 134 |
27.03 | 9-Octadecenoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 0.90 | C21H40O4 | 356 |
Retention Time | Compound Name | Area (%) | Molecular Formula | Molecular Weight |
---|---|---|---|---|
3.96 | Benzene, (chloromethyl)- | 3.01 | C7H7Cl | 126 |
10.07 | 9-Octadecenoic acid (z)- | 1.03 | C18H34O2 | 282 |
11.92 | Oxirane, methyl- | 23.22 | C3H6O | 85 |
12.17 | 2,4-Di-tert-butylphenol | 1.17 | C14H22O | 206 |
13.74 | 1-Chlorooctadecane | 1.05 | C18H37Cl | 288 |
14.07 | Ethanol,2-(9-octadecenyloxy)-,(Z)- | 1.81 | C20H40O2 | 312 |
14.82 | Cyclopentaneacetic acid, 3-oxo-2-pentyl-, methyl ester | 2.13 | C13H22O3 | 226 |
14.89 | Patchouli alcohol | 1.43 | C15H26O | 222 |
14.97 | 1-(4-isopropylphenyl)-2-methylpropyl acetate | 1.09 | C15H22O2 | 234 |
15.72 | Propanal | 6.23 | C3H6O | 58 |
15.96 | 9-Octadecenoic acid (z)- | 0.66 | C18H34O2 | 282 |
16.49 | 2H-Pyran-3-ol, tetrahydro-2,2,6-trimethyl-6-(4-methyl-3-cyclohexen-1-yl), [3S-[3à,6à(R*)]]- | 5.09 | C15H26O2 | 238 |
19.55 | Hexadecanoic acid, methyl ester | 10.72 | C17H34O2 | 270 |
20.15 | Dibutyl phthalate | 2.82 | C16H22O4 | 278 |
20.24 | n-Hexadecanoic acid (9-OCTADECENOIC ACID (Z)-) | 7.32 | C16H32O2 | 256 |
22.22 | 11,14-Octadecadienoic acid, methyl ester | 3.76 | C19H34O2 | 294 |
22.32 | 9-Octadecenoic acid (Z)-, methyl ester | 5.99 | C19H36O2 | 296 |
22.50 | Benzylamphetamine | 5.61 | C16H19N | 225 |
22.73 | Octadecanoic acid, methyl ester | 2.19 | C19H38O2 | 298 |
23.00 | 9,12-Octadecadienoyl chloride, (Z,Z)-( Linoleoyl chloride) | 5.35 | C18H31ClO | 298 |
24.58 | Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester | 1.49 | C19H38O4 | 330 |
25.21 | Hexadecanoic acid, 2,3-dihydroxypropyl ester | 1.14 | C19H38O4 | 330 |
25.55 | N-Methyl-N-benzyltetradecanamine | 2.05 | C22H39N | 317 |
27.03 | 9-Octadecenoic acid (Z)-, 2-hydroxy-1-(hydroxymethyl) ethyl ester | 2.74 | C21H40O4 | 356 |
28.58 | 1,2-Benzenedicarboxylicacid | 0.93 | C24H38O4 | 390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, N.H.; Qari, S.H.; Behiry, S.I.; Dessoky, E.S.; El-Hallous, E.I.; Elshaer, M.M.; Kordy, A.; Maresca, V.; Abdelkhalek, A.; Heflish, A.A. Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop. Appl. Sci. 2021, 11, 4239. https://doi.org/10.3390/app11094239
Youssef NH, Qari SH, Behiry SI, Dessoky ES, El-Hallous EI, Elshaer MM, Kordy A, Maresca V, Abdelkhalek A, Heflish AA. Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop. Applied Sciences. 2021; 11(9):4239. https://doi.org/10.3390/app11094239
Chicago/Turabian StyleYoussef, Nesrine H., Sameer H. Qari, Said I. Behiry, Eldessoky S. Dessoky, Ehab I. El-Hallous, Moustafa M. Elshaer, Ahmed Kordy, Viviana Maresca, Ahmed Abdelkhalek, and Ahmed A. Heflish. 2021. "Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop" Applied Sciences 11, no. 9: 4239. https://doi.org/10.3390/app11094239
APA StyleYoussef, N. H., Qari, S. H., Behiry, S. I., Dessoky, E. S., El-Hallous, E. I., Elshaer, M. M., Kordy, A., Maresca, V., Abdelkhalek, A., & Heflish, A. A. (2021). Antimycotoxigenic Activity of Beetroot Extracts against Alternaria alternata Mycotoxins on Potato Crop. Applied Sciences, 11(9), 4239. https://doi.org/10.3390/app11094239