SVM Performance for Predicting the Effect of Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Dimensional Analysis
2.3. Support Vector Machine (SVM)
2.4. Criteria Evaluation
3. Results and Discussion
3.1. First Scenario: Relative Energy Dissipation
First Scenario SVM Results
3.2. Second Fcenario: Relative Pool Depth
Second Scenario SVM Results
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajaratnam, N.; Chamani, M.R. Energy loss at drops. J. Hydraul. Res. 1995, 33, 373–384. [Google Scholar] [CrossRef]
- Esen, I.I.; Alhumoud, J.M.; Hannan, K.A. Energy Loss at a Drop Structure with a Step at the Base. Water Int. 2004, 29, 523–529. [Google Scholar] [CrossRef]
- Hong, Y.-M.; Huang, H.-S.; Wan, S. Drop characteristics of free-falling nappe for aerated straight-drop spillway. J. Hydraul. Res. 2010, 48, 125–129. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Ghaderi, A.; Di Francesco, S.; Khajei, N. Experimental study of the effect of horizontal screen diameter on hydraulic parameters of vertical drop. Water Supply 2021. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Hurtig, K.I. Screen-Type Energy Dissipator for Hydraulic Structures. J. Hydraul. Eng. 2000, 126, 310–312. [Google Scholar] [CrossRef]
- Çakir, P. Experimental Investigation of Energy Dissipation through Screens. Ph.D. Thesis, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey, 2003. [Google Scholar]
- Bozkus, Z.; Çakir, P.; Ger, A.M. Energy dissipation by vertically placed screens. Can. J. Civ. Eng. 2007, 34, 557–564. [Google Scholar] [CrossRef]
- Mahmoud, M.I.; Ahmed, S.S.; Al-Fahal, A.S.A. Effect of different shapes of holes on energy dissipation through perpendicular screen. J. Environ. Stud. 2013, 12, 29–37. [Google Scholar]
- Sadeghfam, S.; Akhtari, A.A.; Daneshfaraz, R.; Tayfur, G. Experimental investigation of screens as energy dissipaters in submerged hydraulic jump. Turk. J. Eng. Environ. Sci. 2014, 38, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Daneshfaraz, R.; Sadeghfam, S.; Ghahramanzadeh, A. Three-dimensional numerical investigation of flow through screens as energy dissipators. Can. J. Civ. Eng. 2017, 44, 850–859. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Sadeghfam, S.; Tahni, A. Experimental Investigation of Screen as Energy Dissipators in the Movable-Bed Channel. Iran. J. Sci. Technol. Trans. Civ. Eng. 2019, 44, 1–10. [Google Scholar] [CrossRef]
- Mansouri, R.; Ziaei, A. Numerical modeling of flow in the vertical drop with inverse apron. In Proceedings of the 11th Interna-tional Conference on Hydroinformatics (HIC 2014), New York, NY, USA, 17–21 August 2014. [Google Scholar]
- Arffin, J.; Abgulghani, A.; Zakaria, N.A.; Yahya, A.S. Sediment Prediction Using ANN and Regression Approach. In Proceedings of the 1st International Conference on Managing Rivers in the 21st Century: Issues & Challenges, Penang, Malaysia, 21–23 September 2004. [Google Scholar]
- Alp, M.; Cigizoglu, K. Suspended Sediment Load Simulated by Two Artificial Neural Network Methods Using Hydrometeorological Data. Environ. Modeling Softw. 2007, 22, 2–13. [Google Scholar] [CrossRef]
- Geol, A.; Pal, M. Application of Support Vector Machines in Scour Prediction on Grade-Control Structures. Eng. Appl. Artif. Intell. 2009, 22, 216–223. [Google Scholar] [CrossRef]
- Roushangar, K.; Valizadeh, R.; Ghasempour, R. Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM. Water Sci. Technol. 2017, 76, 1614–1628. [Google Scholar] [CrossRef] [PubMed]
- Sadeghfam, S.; Daneshfaraz, R.; Khatibi, R.; Minaei, O. Experimental studies on scour of supercritical flow jets in upstream of screens and modelling scouring dimensions using artificial intelligence to combine multiple models (AIMM). J. Hydroinform. 2019, 21, 893–907. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Bagherzadeh, M.; Esmaeeli, R.; Norouzi, R.; Abraham, J. Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 2021, 21, 217–231. [Google Scholar] [CrossRef]
- Norouzi, R.; Daneshfaraz, R.; Ghaderi, A. Investigation of discharge coefficient of trapezoidal labyrinth weirs using artificial neural networks and support vector machines. Appl. Water Sci. 2019, 9, 148. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Shahheydari, H.; Kavianpour, M.R.; Shamloo, H.; Barati, R. Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network. Environ. Earth Sci. 2017, 76, 86. [Google Scholar] [CrossRef]
- Ghaderi, A.; Daneshfaraz, R.; Torabi, M.; Abraham, J.; Azamathulla, H.M. Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply. 2020, 20, 1988–1998. [Google Scholar] [CrossRef]
- Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy dissipation and hydraulics of flow over trapezoidal- triangular labyrinth weirs. Water 2020, 12, 1992. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 2020, 5, 182. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Asl, M.M.; Bazyar, A.; Abraham, J.; Norouzi, R. The laboratory study of energy dissipation in inclined drops equipped with a screen. J. Appl. Water Eng. Res. 2020, 1–10. [Google Scholar] [CrossRef]
- Kabiri-Samani, A.; Bakhshian, E.; Chamani, M. Flow characteristics of grid drop-type dissipators. Flow Meas. Instrum. 2017, 54, 298–306. [Google Scholar] [CrossRef]
- Daneshfaraz, R.; Aminvash, E.; Esmaeili, R.; Sadeghfam, S.; Abraham, J. Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions. J. Groundw. Sci. Eng. 2020, 8, 924–938. [Google Scholar]
- Daneshfaraz, R.; Bagherzadeh, M.; Ghaderi, A.; Di Francesco, S.; Asl, M.M. Experimental investigation of gabion inclined drops as a sustainable solution for hydraulic energy loss. Ain Shams Eng. J. 2021. [Google Scholar] [CrossRef]
- Roushangar, K.; Alami, M.T.; Shiri, J.; Asl, M.M. Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrol. Res. 2017, 49, 924–938. [Google Scholar] [CrossRef]
- Hasanniya, V. Experimental Investigation of Flow Energy Dissipation through the Application of the Screen in Drops. Master’s Thesis, Civil Engineering Department, Faculty of Engineering, University of Maragheh, Maragheh, Iran, 2019. (In Persian). [Google Scholar]
Percentage of Screens Porosity | D/H | Parameters | ||||
---|---|---|---|---|---|---|
Q (l/s) | y0 (cm) | y1 (cm) | yc (cm) | yp (cm) | ||
50% | 0.067 | 2.5–13.5 | 4.45–6.5 | 2.6–7.1 | 1.92–5.86 | 3.7–10.3 |
0.133 | 2.8–7.0 | 3.5–9.8 | ||||
0.2 | 2.8–7.1 | 3.2–9.8 |
Function | Expression |
---|---|
Linear | |
Polynomial | |
RBF | |
Sigmoid |
Criteria Evaluation | 60–40% | 70–30% | 75–25% | 80–20% | |
---|---|---|---|---|---|
First scenario (ΔE/E0) | RMSE | 0.0429 | 0.0386 | 0.0243 | 0.0395 |
R2 | 0.942 | 0.961 | 0.963 | 0.952 | |
Second scenario (yp/H) | RMSE | 0.0531 | 0.0461 | 0.0328 | 0.0584 |
R2 | 0.952 | 0.966 | 0.972 | 0.95 |
Model | Input Parameters | Model | Input Parameters |
---|---|---|---|
First scenario: Relative Energy Dissipation (ΔE/E0) | |||
Model 1 | D/H | Model 5 | Fr0, yc/H |
Model 2 | yc/H | Model 6 | Fr0, D/H |
Model 3 | Fr0 | Model 7 | Fr0, D/H, yc/H |
Model 4 | D/H, yc/H | ||
Second scenario: Relative Pool Depth (yp/H) | |||
Model 1 | D/H | Model 3 | D/H, yc/H |
Model 2 | yc/H |
Training | Testing | ||||||
---|---|---|---|---|---|---|---|
Model | R2 | RMSE × 100 | KGE | R2 | RMSE × 100 | KGE | γ |
Model 1 | 0.863 | 5.88 | 0.965 | 0.895 | 6.81 | 0.955 | 5 |
Model 2 | 0.994 | 0.614 | 0.99 | 0.997 | 0.583 | 0.988 | 8 |
Model 3 | 0.991 | 0.565 | 0.998 | 0.996 | 0.489 | 0.991 | 5 |
Model 4 | 0.986 | 0.721 | 0.995 | 0.967 | 1.7 | 0.98 | 4 |
Model 5 | 0.995 | 0.628 | 0.992 | 0.996 | 0.539 | 0.982 | 2 |
Model 6 | 0.993 | 0.7 | 0.995 | 0.96 | 2.18 | 0.981 | 8 |
Model 7 | 0.992 | 0.768 | 0.995 | 0.963 | 2.42 | 0.981 | 8 |
Training | Testing | ||||||
---|---|---|---|---|---|---|---|
Model | R2 | RMSE × 100 | KGE | R2 | RMSE × 100 | KGE | γ |
Model 1 | 0.648 | 9.45 | 0.988 | 0.733 | 8.36 | 0.975 | 10 |
Model 2 | 0.974 | 5.42 | 0.991 | 0.97 | 4.88 | 0.982 | 6 |
Model 3 | 0.988 | 3.95 | 0.998 | 0.988 | 3.89 | 0.993 | 1 |
Independent Parameters | Eliminated Parameter | Training | Testing | ||
---|---|---|---|---|---|
RMSE × 100 | R2 | RMSE × 100 | R2 | ||
First scenario: Relative energy dissipation | |||||
Fr0, yc/H, D/H | ----- | 0.768 | 0.992 | 2.42 | 0.963 |
Fr0, yc/H | D/H | 0.628 | 0.995 | 0.539 | 0.996 |
Fr0, D/H | yc/H | 0.7 | 0.993 | 2.18 | 0.69 |
yc/H, D/H | Fr0 | 0.721 | 0.986 | 1.7 | 0.967 |
Second scenario: Relative pool depth | |||||
D/H, yc/H | ----- | 3.95 | 0.988 | 3.89 | 0.988 |
D/H | yc/H | 9.45 | 0.648 | 8.36 | 0.733 |
yc/H | D/H | 5.42 | 0.974 | 4.88 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daneshfaraz, R.; Aminvash, E.; Ghaderi, A.; Abraham, J.; Bagherzadeh, M. SVM Performance for Predicting the Effect of Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop. Appl. Sci. 2021, 11, 4238. https://doi.org/10.3390/app11094238
Daneshfaraz R, Aminvash E, Ghaderi A, Abraham J, Bagherzadeh M. SVM Performance for Predicting the Effect of Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop. Applied Sciences. 2021; 11(9):4238. https://doi.org/10.3390/app11094238
Chicago/Turabian StyleDaneshfaraz, Rasoul, Ehsan Aminvash, Amir Ghaderi, John Abraham, and Mohammad Bagherzadeh. 2021. "SVM Performance for Predicting the Effect of Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop" Applied Sciences 11, no. 9: 4238. https://doi.org/10.3390/app11094238
APA StyleDaneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., & Bagherzadeh, M. (2021). SVM Performance for Predicting the Effect of Horizontal Screen Diameters on the Hydraulic Parameters of a Vertical Drop. Applied Sciences, 11(9), 4238. https://doi.org/10.3390/app11094238