Geotechnical Property Modeling and Construction Safety Zoning Based on GIS and BIM Integration
Abstract
:1. Introduction
1.1. Background
1.2. Geographic Information System (GIS) and Building Information Modeling (BIM)
1.3. Previous BIM-GIS Integration
1.4. Scope of Work
2. Research Methods
2.1. Geotechnical Investigation Data/Information
2.2. Geotechnical Parameters Spatial Interpolation Using GIS
2.3. 3D Visualization, Management, and Soil Volume Calculation Using BIM
3. Implementation on the Peshawar Region Borehole Data
3.1. Study Area and Data Collection
3.2. Geotechnical Parameter Map Generation and Validation
3.3. Visualization, Management, and Volume Calculation
3.4. Soil Classification Map According to OSHA for Safe Construction Zoning
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Departement of Economic and Social Affairs United Nation. World Urbanization Prospects 2018; Departement of Economic and Social Affairs United Nation: New York, NY, USA, 2018. [Google Scholar]
- Mangi, M.Y.; Yue, Z.; Kalwar, S.; Ali Lashari, Z. Comparative Analysis of Urban Development Trends of Beijing and Karachi Metropolitan Areas. Sustainability 2020, 12, 451. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ali, A.K.; Skibniewski, M.J.; Lee, D.Y.; Park, C. Excavation Safety Modeling Approach Using BIM and VPL. Adv. Civ. Eng. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Alqadad, A.; Shahrour, I.; Sukik, A. Smart system for safe and optimal soil investigation in urban areas. Undergr. Space 2017, 2, 220–226. [Google Scholar] [CrossRef]
- Soil Classificaiton | Transcript |. Available online: https://www.osha.gov/dts/vtools/construction/soil_testing_fnl_eng_web_transcript.html (accessed on 22 January 2021).
- Tanoli, W.A.; Sharafat, A.; Park, J.; Seo, J.W. Damage Prevention for underground utilities using machine guidance. Autom. Constr. 2019, 107, 102893. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Brown, T. Use of SPT Blow Counts to Estimate Shear Strength Properties of Soils: Energy Balance Approach. J. Geotech. Geoenviron. Eng. 2009, 135, 830–834. [Google Scholar] [CrossRef]
- Mujtaba, H.; Farooq, K.; Sivakugan, N.; Das, B.M. Evaluation of relative density and friction angle based on SPT-N values. KSCE J. Civ. Eng. 2018, 22, 572–581. [Google Scholar] [CrossRef]
- Akin, M.K.; Kramer, S.L.; Topal, T. Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Eng. Geol. 2011, 119, 1–17. [Google Scholar] [CrossRef]
- Arshid, M.U.; Kamal, M.A. Regional geotechnical mapping employing kriging on electronic geodatabase. Appl. Sci. 2020, 10, 7625. [Google Scholar] [CrossRef]
- Aaqib, M.; Park, D.; Adeel, M.B.; Hashash, Y.M.A.; Ilhan, O. Simulation-based site amplification model for shallow bedrock sites in Korea. Earthq. Spectra 2021. [Google Scholar] [CrossRef]
- El May, M.; Dlala, M.; Chenini, I. Urban geological mapping: Geotechnical data analysis for rational development planning. Eng. Geol. 2010, 116, 129–138. [Google Scholar] [CrossRef]
- Özsan, A.; Öcal, A.; Akin, M.; Başarir, H. Engineering geological appraisal of the Sulakyurt dam site, Turkey. Bull. Eng. Geol. Environ. 2007, 66, 483–492. [Google Scholar] [CrossRef]
- Kim, H.S.; Sun, C.G.; Kim, M.; Cho, H.I.; Lee, M.G. GIS-based optimum geospatial characterization for seismic site effect assessment in an inland urban area, South Korea. Appl. Sci. 2020, 10, 7443. [Google Scholar] [CrossRef]
- Madani Esfahani, N.; Asghari, O. Fault detection in 3D by sequential Gaussian simulation of Rock Quality Designation (RQD): Case study: Gazestan phosphate ore deposit, Central Iran. Arab. J. Geosci. 2013, 6, 3737–3747. [Google Scholar] [CrossRef]
- Sideri, D.; Modis, K.; Rozos, D. Multivariate geostatistical modelling of geotechnical characteristics of the alluvial deposits in West Thessaly, Greece. Bull. Eng. Geol. Environ. 2014, 73, 709–722. [Google Scholar] [CrossRef]
- Myriam, B.; Kristel, M.F.; Jaime, A.; Didier, B.; Agathe, R.; Santiago, M.; Claude, P. Combined geophysical and geotechnical approaches for microzonation studies in Hispaniola Island. Geosci. 2018, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Wanyama, D.; Bunting, E.L.; Goodwin, R.; Weil, N.; Sabbatini, P.; Andresen, J.A. Modeling land suitability for Vitis vinifera in Michigan using advanced geospatial data and methods. Atmosphere 2020, 11, 339. [Google Scholar] [CrossRef] [Green Version]
- Basir, W.N.F.W.A.; Majid, Z.; Ujang, U.; Chong, A. Integration of GIS and BIM techniques in construction project management—A review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2018, 42, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Hartemink, A.E.; McBratney, A.; Mendonça-Santos, M.d.L. Digital Soil Mapping with Limited Data, 1st ed.; Springer: Dordrecht, The Netherlands, 2008; ISBN 9781402085918. [Google Scholar]
- Collins, M.G.; Steiner, F.R.; Rushman, M.J. Land-use suitability analysis in the United States: Historical development and promising technological achievements. Environ. Manag. 2001, 28, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, P.; Richard, L. Integration of GIS-based suitability analysis and multicriteria evaluation in a spatial decision support system for route selection. Environ. Plan. B Plan. Des. 1994, 21, 323–340. [Google Scholar] [CrossRef]
- Sahito, N.; Kalwar, S.; Memon, I.A.; Lashari, Z.A.; Mangi, M.Y.; Hussain, A. Examining rapid land-use variation using multicriteria decision analysis (mcda) method. PONTE Int. Sci. Res. J. 2020, 76, 89. [Google Scholar] [CrossRef]
- Lashari, Z.A.; Mangi, M.Y.; Sahito, N.; Brohi, S.; Meghwar, S.; Khokhar, Q.U.D. Land Suitability Analysis for Public Parks using the GIS Application. SINDH Univ. Res. J.—SCIENCE Ser. 2017, 49, 505–512. [Google Scholar] [CrossRef]
- Sotiropoulos, N.; Benardos, A.; Mavrikos, A. Spatial Modelling for the Assessment of Geotechnical Parameters. Procedia Eng. 2016, 165, 334–342. [Google Scholar] [CrossRef]
- Salgado, R.; Ganju, E.; Prezzi, M. Site variability analysis using cone penetration test data. Comput. Geotech. 2019, 105, 37–50. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Sharafat, A.; Khan, M.S.; Latif, K.; Seo, J. BIM-Based Tunnel Information Modeling Framework for Visualization, Management, and Simulation of Drill-and-Blast Tunneling Projects. J. Comput. Civ. Eng. 2021, 35, 04020068. [Google Scholar] [CrossRef]
- Khan, M.S.; Adil, M.; Khan, A. Assessment of structural design capability of building information modeling (bim) tools in building industry of pakistan. J. Mech. Contin. Math. Sci. 2019, 14, 385–401. [Google Scholar] [CrossRef]
- Ohori, K.A.; Diakité, A.; Krijnen, T.; Ledoux, H.; Stoter, J. Processing BIM and GIS models in practice: Experiences and recommendations from a GeoBIM project in The Netherlands. ISPRS Int. J. Geo-Inf. 2018, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Ren, Y. Integrated Application of BIM and GIS: An Overview. Procedia Eng. 2017, 196, 1072–1079. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wright, G.; Cheng, J.C.P.; Li, X.; Liu, R. A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Inf. 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, P.; Zhang, S.; Lee, Y.C. Semantic web technologies in AEC industry: A literature overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.P.; Hampson, K. Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective. ISPRS Int. J. Geo-Inf. 2017, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shannon, J.; Voun, H.; Truijens, M.; Chi, H.L.; Wang, X. Spatial and temporal analysis on the distribution of active radio-frequency identification (RFID) tracking accuracy with the kriging method. Sensors 2014, 14, 20451–20467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OpenGIS City Geography Markup Language (CityGML) Encoding Standard, Version 2.0.0. 2012. Available online: https://mediatum.ub.tum.de/doc/1145731/file.pdf (accessed on 27 April 2021).
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119287568. [Google Scholar]
- Azhar, S. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.I.; Park, J. Development of an IFC-based data schema for the design information representation of the NATM tunnel. KSCE J. Civ. Eng. 2016, 20, 2112–2123. [Google Scholar] [CrossRef]
- Motamedi, A.; Soltani, M.M.; Setayeshgar, S.; Hammad, A. Extending IFC to incorporate information of RFID tags attached to building elements. Adv. Eng. Inform. 2016, 30, 39–53. [Google Scholar] [CrossRef]
- Ergen, E.; Kula, B.; Guven, G.; Artan, D. Formalization of Occupant Feedback and Integration with BIM in Office Buildings. J. Comput. Civ. Eng. 2021, 35, 1–19. [Google Scholar] [CrossRef]
- Rafiee, A.; Dias, E.; Fruijtier, S.; Scholten, H. From BIM to Geo-analysis: View Coverage and Shadow Analysis by BIM/GIS Integration. In Proceedings of the Procedia Environmental Sciences; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 22, pp. 397–402. [Google Scholar]
- Bansal, V.K. Use of GIS and Topology in the Identification and Resolution of Space Conflicts. J. Comput. Civ. Eng. 2011, 25, 159–171. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as integrated digital environments for modeling and monitoring of historic buildings. Appl. Sci. 2020, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Colucci, E.; de Ruvo, V.; Lingua, A.; Matrone, F.; Rizzo, G. HBIM-GIS integration: From IFC to cityGML standard for damaged cultural heritage in a multiscale 3D GIS. Appl. Sci. 2020, 10, 1356. [Google Scholar] [CrossRef] [Green Version]
- Teo, T.A.; Cho, K.H. BIM-oriented indoor network model for indoor and outdoor combined route planning. Adv. Eng. Inform. 2016, 30, 268–282. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, J.; Huang, W. Method for generation of indoor GIS models based on BIM models to support adjacent analysis of indoor spaces. ISPRS Int. J. Geo-Inf. 2020, 9, 508. [Google Scholar] [CrossRef]
- Costa, G.; Sicilia; Lilis, G.N.; Rovas, D.V.; Izkara, J. A comprehensive ontologies-based framework to support the retrofitting design of energy-efficient districts. In eWork and eBusiness in Architecture, Engineering and Construction—Proceedings of the 11th European Conference on Product and Process Modelling, ECPPM 2016; 2016; pp. 673–681. Available online: https://discovery.ucl.ac.uk/id/eprint/10063049/1/C41.pdf (accessed on 27 April 2021).
- Thiis, T.; Hjelseth, E. Use of BIM and GIS to enable climatic adaptations of buildings. In Proceedings of the eWork and eBusiness in Architecture, Engineering and Construction; 2008; pp. 409–417. Available online: https://www.researchgate.net/profile/Eilif_Hjelseth/publication/262709383_Use_of_BIM_and_GIS_to_enable_climatic_adaptations_of_buildings/links/5842a9f908ae2d2175636d0f/Use-of-BIM-and-GIS-to-enable-climatic-adaptations-of-buildings.pdf (accessed on 27 April 2021).
- El-Mekawy, M.; Östman, A.; Hijazi, I. A unified building model for 3D urban GIS. ISPRS Int. J. Geo-Inf. 2012, 1, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Liu, Z.; Mbachu, J. An Integrated BIM–GIS Method for Planning of Water Distribution System. ISPRS Int. J. Geo-Inf. 2019, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Benner, J.; Geiger, A.; Leinemann, K.; Karlsruhe, F.; Informatik, A.; Benner, J.; Geiger, A.; Leinemann, K. Flexible Generation of Semantic 3D Building Models. In Proceedings of the Workshop on Next Generation 3D City Models; 2005; Volume 49, pp. 17–22. Available online: https://www.researchgate.net/profile/Thomas_Kolbe2/publication/343539567_Proceedings_of_the_1st_International_Workshop_on_Next_Generation_3D_City_Models_21-22_June_2005_Bonn_Germany_Jointly_organized_by_University_of_Bonn_DGPF_EuroSDR_and_ISPRS/links/5f2fec1e458515b729100695/Proceedings-of-the-1st-International-Workshop-on-Next-Generation-3D-City-Models-21-22-June-2005-Bonn-Germany-Jointly-organized-by-University-of-Bonn-DGPF-EuroSDR-and-ISPRS.pdf#page=21 (accessed on 27 April 2021).
- Isikdag, U.; Underwood, J.; Aouad, G. An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Adv. Eng. Inform. 2008, 22, 504–519. [Google Scholar] [CrossRef]
- Kim, J.I.; Koo, B.; Suh, S.; Suh, W. Integration of BIM and GIS for formal representation of walkability for safe routes to school programs. KSCE J. Civ. Eng. 2016, 20, 1669–1675. [Google Scholar] [CrossRef]
- De Laat, R.; van Berlo, L. Integration of BIM and GIS: The Development of the CityGML GeoBIM Extension. In Advances in 3D Geo-Information Sciences; Kolbe, T.H., König, G., Nagel, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 211–225. ISBN 978-3-642-12670-3. [Google Scholar]
- Tashakkori, H.; Rajabifard, A.; Kalantari, M. A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Build. Environ. 2015, 89, 170–182. [Google Scholar] [CrossRef]
- Del Giudice, M.; Osello, A.; Patti, E. BIM and GIS for district modeling. In eWork and eBusiness in Architecture, Engineering and Construction—Proceedings of the 10th European Conference on Product and Process Modelling, ECPPM 2014; 2015; pp. 851–854. Available online: https://www.researchgate.net/profile/Edoardo_Patti/publication/263357695_BIM_and_GIS_for_district_modeling/links/5582d8af08ae12bde6e635f2.pdf (accessed on 27 April 2021).
- Kim, M.; Kim, H.S.; Chung, C.K. A Three-Dimensional Geotechnical Spatial Modeling Method for Borehole Dataset Using Optimization of Geostatistical Approaches. KSCE J. Civ. Eng. 2020, 24, 778–793. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Li, D. Bayesian perspective on geotechnical variability and site characterization. Eng. Geol. 2016, 203, 117–125. [Google Scholar] [CrossRef]
- Orton, T.G.; Pringle, M.J.; Bishop, T.F.A. A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma 2016, 262, 174–186. [Google Scholar] [CrossRef]
- Mahmood, K.; Ahmad, N.; Khan, U.; Iqbal, Q. Seismic hazard maps of Peshawar District for various return periods. Nat. Hazards Earth Syst. Sci. 2020, 20, 1639–1661. [Google Scholar] [CrossRef]
- Dikmen, Ü. Statistical correlations of shear wave velocity and penetration resistance for soils. J. Geophys. Eng. 2009, 6, 61–72. [Google Scholar] [CrossRef]
- Yao, S.; Ling, X.; Nueesch, F.; Schrotter, G.; Schubiger, S.; Fang, Z.; Ma, L.; Tian, Z. Maintaining semantic information across generic 3D model editing operations. Remote Sens. 2020, 12, 335. [Google Scholar] [CrossRef] [Green Version]
- Autodesk Help About Points | Civil 3D | Autodesk Knowledge Network. Available online: https://knowledge.autodesk.com/support/civil-3d/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/Civil3D-UserGuide/files/GUID-3481A6B7-B16E-4636-8FC0-F28119CEC0FD-htm.html (accessed on 9 April 2021).
- IFC GUID—BuildingSMART Technical. Available online: https://technical.buildingsmart.org/resources/ifcimplementationguidance/ifc-guid/ (accessed on 28 December 2020).
Category | Parameters |
---|---|
Strength | Compressive strength |
Cohesion | |
Shear strength | |
Tensile strength | |
Angle of internal friction | |
Poisson’s ratio | |
Elastic modulus | |
Classification | Liquid limit |
Plastic limit | |
Plasticity index | |
Moisture content | |
Unit weight | |
Specific gravity | |
Compaction | California bearing ratio |
Maximum dry density | |
Optimum moisture content |
Location ID | Easting | Northing | Final Depth |
---|---|---|---|
BH1 | 72.095 | 33.923 | 35 |
BH2 | 71.943 | 33.852 | 27.9 |
BH3 | 71.847 | 33.855 | 37.7 |
BH4 | 71.85 | 33.966 | 28 |
BH5 | 72.1 | 33.976 | 37.4 |
BH6 | 72.095 | 34.053 | 40 |
BH7 | 71.946 | 34.03 | 40 |
BH8 | 71.941 | 34.114 | 34 |
BH9 | 71.8 | 34.038 | 40 |
BH10 | 71.735 | 34.035 | 40 |
BH11 | 71.734 | 33.997 | 40 |
BH12 | 71.706 | 33.923 | 40 |
BH13 | 71.776 | 33.82 | 40 |
BH14 | 71.869 | 33.778 | 40 |
BH15 | 71.86 | 33.713 | 40 |
BH16 | 72.058 | 33.775 | 40 |
BH17 | 71.163 | 33.775 | 40 |
BH18 | 72.225 | 33.874 | 40 |
BH19 | 72.232 | 34.072 | 40 |
BH20 | 72.22 | 33.973 | 40 |
Location ID | Depth Top | Depth Bottom | Geology |
---|---|---|---|
BH1 | 0 | 7 | silty sand |
7 | 13 | clay | |
13 | 18.2 | silt | |
18.2 | 26.3 | silty sand | |
26.3 | 27.7 | weathered rock | |
27.7 | 35 | weathered rock | |
BH2 | 0 | 4.7 | silt |
4.7 | 15 | clay | |
15 | 18 | silt | |
18 | 24.6 | silt | |
24.6 | 27.9 | silty sand | |
BH3 | 0 | 4.6 | silt |
4.6 | 8 | clay | |
8 | 9.7 | silt | |
9.7 | 14.3 | silty sand | |
14.3 | 19.7 | silt | |
19.7 | 27.2 | silt | |
27.2 | 30.3 | sand | |
30.3 | 34.6 | sand | |
34.6 | 37.7 | weathered rock |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.S.; Park, J.; Seo, J. Geotechnical Property Modeling and Construction Safety Zoning Based on GIS and BIM Integration. Appl. Sci. 2021, 11, 4004. https://doi.org/10.3390/app11094004
Khan MS, Park J, Seo J. Geotechnical Property Modeling and Construction Safety Zoning Based on GIS and BIM Integration. Applied Sciences. 2021; 11(9):4004. https://doi.org/10.3390/app11094004
Chicago/Turabian StyleKhan, Muhammad Shoaib, Jaemin Park, and Jongwon Seo. 2021. "Geotechnical Property Modeling and Construction Safety Zoning Based on GIS and BIM Integration" Applied Sciences 11, no. 9: 4004. https://doi.org/10.3390/app11094004
APA StyleKhan, M. S., Park, J., & Seo, J. (2021). Geotechnical Property Modeling and Construction Safety Zoning Based on GIS and BIM Integration. Applied Sciences, 11(9), 4004. https://doi.org/10.3390/app11094004