Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data
Abstract
:1. Introduction
2. Estimation Algorithm
2.1. Step 1: Structural Shape Function Composition
2.2. Step 2: Measurement Data
2.3. Step 3: Deformed Shape Estimation
3. Validation Issues and FEM Model
3.1. Validation Process and Issues
3.2. Numerical Model for Verification
4. Validation of Results
4.1. Effect of Shape Function Type
4.1.1. Beam Model
4.1.2. Truss Model
4.2. Sensor Placement Method
4.2.1. Methods of Sensor Placement
4.2.2. Comparison of Results
4.3. Effectiveness of Using Multi-Response Data
4.3.1. Beam Model
4.3.2. Truss Model
5. Conclusions
- Comparison of results by MSF and SSF has shown that SSF is more useful for estimating structural deformed shape. In addition, EI-DPR-distance, the sensor placement method proposed in this study, can minimize the interference effect between adjacent sensors and estimate the deformed shape with more stable accuracy than the EI and EI-DPR methods.
- Finally, an estimation algorithm using multi-response data has shown better performance compared with previous work. The addition of slope and strain data can improve estimation accuracy or reduce required displacement data to estimate rational SDS. Therefore, it is expected that cost-effective SHM can be established using the proposed estimation method.
- However, the target model verified in this study is limited to the 2D FEM model. Verification with a 3D FEM model, including transverse response and field tests, is required to be performed as a further study in order to apply the developed algorithm to the SHM of an actual structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chae, M.; Yoo, H.; Kim, J.; Cho, M. Development of a wireless sensor network system for suspension bridge health monitoring. Autom. Constr. 2012, 21, 237–252. [Google Scholar] [CrossRef]
- Zhou, G.-D.; Yi, T.-H. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring. Math. Probl. Eng. 2013, 2013, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, X.; Sun, D.; Xie, X. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge. Sci. World J. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Marchewka, A.; Ziółkowski, P.; Aguilar-Vidal, V. Framework for Structural Health Monitoring of Steel Bridges by Computer Vision. Sensors 2020, 20, 700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidi, M.; Mohammadi, M.; Kivi, S.S.; Abdolvand, M.; Truong-Hong, L.; Samali, B. A Decade of Modern Bridge Monitoring Using Terrestrial Laser Scanning: Review and Future Directions. Remote Sens. 2020, 12, 3796. [Google Scholar] [CrossRef]
- Park, K.-T.; Kim, S.-H.; Park, H.-S.; Lee, K.-W. The determination of bridge displacement using measured acceleration. Eng. Struct. 2005, 27, 371–378. [Google Scholar] [CrossRef]
- Lee, H.S.; Hong, Y.H.; Park, H.W. Design of an FIR filter for the displacement reconstruction using measured acceleration in low-frequency dominant structures. Int. J. Numer. Methods Eng. 2009, 82, 403–434. [Google Scholar] [CrossRef]
- Park, J.-W.; Sim, S.-H.; Jung, H.-J.; Spencer, B.F., Jr. Development of a Wireless Displacement Measurement System Using Acceleration Responses. Sensors 2013, 13, 8377–8392. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Sim, S.-H.; Park, J.-W.; Lee, J. Extension of indirect displacement estimation method using acceleration and strain to various types of beam structures. Smart Struct. Syst. 2014, 14, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Yun, C.-B.; Sim, S.-H. Displacement estimation of bridge structures using data fusion of acceleration and strain measurement incorporating finite element model. Smart Struct. Syst. 2015, 15, 645–663. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Yang, X.; Huang, Q. Using Inclinometers to Measure Bridge Deflection. J. Bridg. Eng. 2005, 10, 564–569. [Google Scholar] [CrossRef]
- Foss, G.C.; Haugse, E.D. Using modal test results to develop strain to displacement transformation. In Proceedings of the 13th International Modal Analysis Conference, Nashville, TN, USA, 13–16 February 1995; pp. 112–118. [Google Scholar]
- Shin, S.; Lee, S.-U.; Kim, Y.; Kim, N.-S. Estimation of bridge displacement responses using FBG sensors and theoretical mode shapes. Struct. Eng. Mech. 2012, 42, 229–245. [Google Scholar] [CrossRef]
- Kang, L.-H.; Kim, D.-K.; Han, J.-H. Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J. Sound Vib. 2007, 305, 534–542. [Google Scholar] [CrossRef]
- Rapp, S.; Kang, L.-H.; Han, J.-H.; Mueller, U.C.; Baier, H. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Mater. Struct. 2009, 18, 025006. [Google Scholar] [CrossRef]
- Cho, S.; Park, J.-W.; Palanisamy, R.P.; Sim, S.-H. Reference-Free Displacement Estimation of Bridges Using Kalman Filter-Based Multimetric Data Fusion. J. Sens. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Li, L.; Zhong, B.-S.; Li, W.-Q.; Sun, W.; Zhu, X.-J. Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method. J. Intell. Mater. Syst. Struct. 2017, 29, 463–478. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, H.; Wang, J.; Zhang, J.; Ma, M.; Zhong, X. Modal learning displacement-strain transformation. Rev. Sci. Instrum. 2019, 90, 075113. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, K.; Glisic, B. A Comparison of Strain-Based Methods for the Evaluation of the Relative Displacement of Beam-Like Structures. Front. Built Environ. 2019, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Lee, K.; Kang, Y. Evaluation of quasi-static responses using displacement data from a limited number of points on a structure. Int. J. Steel Struct. 2017, 17, 1211–1224. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.; Kang, Y. Quasi-static responses estimation of a cable-stayed bridge from displacement data at a limited number of points. Int. J. Steel Struct. 2017, 17, 789–800. [Google Scholar] [CrossRef]
- Datta, B.N. Numerical Linear Algebra and Applications, 2nd ed.; John Wiley &Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Meo, M.; Zumpano, G. On the optimal sensor placement techniques for a bridge structure. Eng. Struct. 2005, 27, 1488–1497. [Google Scholar] [CrossRef]
- Worden, K.; Burrows, A. Optimal sensor placement for fault detection. Eng. Struct. 2001, 23, 885–901. [Google Scholar] [CrossRef]
- Sunca, F.; Okur, F.Y.; Altunişik, A.C.; Kahya, V. Optimal Sensor Placement for Laminated Composite and Steel Cantilever Beams by the Effective Independence Method. Struct. Eng. Int. 2021, 31, 85–92. [Google Scholar] [CrossRef]
- Kammer, D. Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures. J. Guid. Control Dyn. 1991, 14, 251–259. [Google Scholar] [CrossRef]
- Papadopoulos, M.; Garcia, E. Sensor placement methodologies for dynamic testing. AIAA J. 1998, 36, 256–263. [Google Scholar] [CrossRef]
Classification | [7] | [12] | [11] | [20,21] | This Study |
---|---|---|---|---|---|
Used response data | Acceleration | Strain | Slope | Displacement | Displacement Slope Strain |
Estimated response | Displacement at a point where the sensor is installed | Displacement at a certain point | Displacement at a certain point | Structural deformed shape | Structural deformed shape |
Estimation method | Least-square | Shape Superposition /Least-square | Shape Superposition /Least-square | Shape Superposition /Least-square | Shape Superposition /Least-square |
Shape function | - | Mode shape | Power series | Structural shape | Structural shape |
Sensor placement method | - | - | - | - | EI-DPR-distance method |
Measured Data | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Displacement (Node) | 8 | 54 | 23 | 39 | 11 | 51 |
Slope (Node) | 1 | 61 | 31 | 16 | 46 | - |
Strain (Element) | 8 | 54 | 23 | 38 | 16 | 45 |
Measured Data | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Displacement (Node) | 4 | 10 | 16 | 22 | 3 | 11 |
Slope (Element) | 1 | 12 | 6 | 7 | 13 | 22 |
Strain (Element) | 3 | 10 | 15 | 20 | 5 | 8 |
Optimization Method | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
EI | 1 | 12 | 14 | 10 | 21 | 3 |
EI-DPR | 1 | 12 | 13 | 11 | 22 | 2 |
EI-DPR-distance | 1 | 12 | 17 | 7 | 18 | 6 |
Optimization Method | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
EI | 46 | 36 | 32 | 3 | 42 | 10 |
EI-DPR | 23 | 34 | 55 | 3 | 44 | 10 |
EI-DPR-distance | 23 | 39 | 55 | 4 | 14 | 10 |
Displacement (Node) | Number of Slope Data (Node) | ||||||
---|---|---|---|---|---|---|---|
Number of Data | [20] | ||||||
8 | 61 | 31 | 1 | 1 | 1 | 1 | |
24 | 31 | 1 | 61 | 61 | 61 | 61 | |
23 | 46 | 61 | 45 | 31 | 31 | 31 | |
39 | 1 | 17 | 33 | 16 | 46 | 17 | |
11 | 17 | 45 | 16 | 46 | 17 | 45 | |
51 | 13 | 13 | 28 | 4 | 14 | 48 |
Displacement (Node) | Number of Strain Data (Element) | ||||||
---|---|---|---|---|---|---|---|
Number of Data | [20] | ||||||
8 | 54 | 24 | 38 | 30 | 30 | 30 | |
24 | 37 | 39 | 30 | 15 | 46 | 16 | |
23 | 22 | 16 | 45 | 46 | 16 | 45 | |
39 | 45 | 31 | 15 | 57 | 57 | 57 | |
11 | 30 | 46 | 57 | 4 | 4 | 4 | |
51 | 15 | 20 | 4 | 11 | 50 | 35 |
Displacement (Node) | Number of Slope Data (Element) | ||||||
---|---|---|---|---|---|---|---|
Number of Data | [20] | ||||||
22 | 1 | 12 | 6 | 18 | 17 | 7 | |
16 | 1 | 12 | 7 | 17 | 18 | 6 | |
11 | 1 | 7 | 12 | 17 | 18 | 6 | |
3 | 7 | 1 | 12 | 17 | 18 | 6 | |
5 | 1 | 12 | 18 | 6 | 17 | 7 | |
9 | 1 | 12 | 17 | 7 | 18 | 6 |
Displacement (Node) | Number of Strain Data (Element) | ||||||
---|---|---|---|---|---|---|---|
Number of Data | [20] | ||||||
22 | 23 | 39 | 55 | 4 | 14 | 10 | |
16 | 39 | 23 | 55 | 3 | 10 | 9 | |
11 | 39 | 23 | 55 | 3 | 9 | 4 | |
3 | 39 | 23 | 55 | 9 | 4 | 13 | |
5 | 39 | 23 | 55 | 9 | 13 | 22 | |
9 | 39 | 23 | 55 | 13 | 22 | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, N.; Lee, J.; Lee, K.; Kang, Y.-J. Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data. Appl. Sci. 2021, 11, 4000. https://doi.org/10.3390/app11094000
Byun N, Lee J, Lee K, Kang Y-J. Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data. Applied Sciences. 2021; 11(9):4000. https://doi.org/10.3390/app11094000
Chicago/Turabian StyleByun, Namju, Jeonghwa Lee, Keesei Lee, and Young-Jong Kang. 2021. "Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data" Applied Sciences 11, no. 9: 4000. https://doi.org/10.3390/app11094000
APA StyleByun, N., Lee, J., Lee, K., & Kang, Y. -J. (2021). Estimation of Structural Deformed Configuration for Bridges Using Multi-Response Measurement Data. Applied Sciences, 11(9), 4000. https://doi.org/10.3390/app11094000