Potentially Toxic Trace Elements in the Urban Soils of Santiago de Compostela (Northwestern Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Pollution Assessment
2.4. Statistics
3. Results
3.1. Trace Element Concentrations and Influence of Land Use and Lithology
3.2. Assessment of Pollution Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN DESA. Revision of World Urbanization Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Ajmone-Marsan, F.; Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.S.; Zhu, Y.G. Urban soil and human health: A review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Tresch, S.; Moretti, M.; Le Bayon, R.C.; Mäder, P.; Zanetta, A.; Frey, D.; Fliessbach, A. A gardener’s influence on urban soil quality. Front. Environ. Sci. 2018, 6, 25. [Google Scholar] [CrossRef]
- Zahran, S.; Mielke, H.W.; McElmurry, S.P.; Fillipelli, G.M.; Laidlaw, M.A.S.; Taylor, M.P. Determining the relative importance of soil sample locations to predict risk of child lead exposure. Environ. Int. 2013, 60, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Santorufo, L.; Van Gestel, C.A.; Maisto, G. Sampling season affects conclusions on soil arthropod community structure responses to metal pollution in Mediterranean urban soils. Geoderma 2014, 226, 47–53. [Google Scholar] [CrossRef]
- Norra, S.; Weber, A.; Kramar, U.; Stuben, D. Mapping of trace metals in urban soils. J. Soils Sediments 2001, 1, 77–97. [Google Scholar] [CrossRef]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Madrid, L.; Díaz-Barrientos, E.; Ruiz-Cortés, E.; Reinoso, R.; Biasioli, M.; Davidson, C.M.; Duarte, A.C.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; et al. Variability in concentrations of potentially toxic elements in urban parks from six European cities. J. Environ. Monit. 2006, 8, 1158–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfleiderer, S.; Englisch, M.; Reiter, R. Current state of heavy metal contents in Vienna soils. Environ. Geochem. Health 2012, 34, 665–675. [Google Scholar] [CrossRef]
- Abel, S.; Nehls, T.; Mekiffer, B.; Wessolek, G. Heavy metals and benzo[a]pyrene in soils from construction and demolition rubble. J. Soils Sediments 2015, 15, 1771–1780. [Google Scholar] [CrossRef]
- Foti, L.; Dubs, F.; Gignoux, J.; Lata, J.-C.; Lerch, T.Z.; Mathieu, J.; Nold, F.; Nunan, N.; Raynaud, X.; Abbadie, L.; et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci. Total Environ. 2017, 598, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Mihailovič, A.; Budinski Petkovič, L.; Popov, S.; Ninkov, J.; Vasin, J.; Ralevič, N.M.; Vučinič-Vasič, M. Spatial distribution of metals in urban soil of Novi Sad, Serbia. GIS based approach. J. Geochem. Explor. 2015, 150, 104–114. [Google Scholar] [CrossRef]
- Ljung, K.; Otabbong, E.; Selinus, O. Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environ. Geochem. Health 2006, 28, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Beroigui, M.; Naylo, A.; Walczak, M.; Hafidi, M.; Charzyński, P.; Świtoniak, M.; Różański, S.; Boularbah, A. Physicochemical and microbial properties of urban park soils of the cities of Marrakech, Morocco and Toruń, Poland: Human health risk assessment of fecal coliforms and trace elements. Catena 2020, 194, 104673. [Google Scholar] [CrossRef]
- Sánchez-Martín, M.J.; Sánchez-Camazano, M.; Lorenzo, L.F. Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: Influence of traffic intensity. Bull. Environ. Contam. Toxicol. 2000, 64, 250–257. [Google Scholar] [CrossRef]
- Morillo, E.; Romero, A.S.; Madrid, L.; Villaverde, J.; Maqueda, C. Characterization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut. 2008, 187, 41–51. [Google Scholar] [CrossRef]
- Acosta, J.A.; Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Arocena, J.M. Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere 2015, 134, 328–337. [Google Scholar] [CrossRef]
- Ordóñez, A.; Álvarez, R.; De Miguel, E.; Charlesworth, S. Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15 years of study. Sci. Total Environ. 2015, 524–525, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain). Environ. Res. 2015, 136, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seijo, A.; Andrade, M.L.; Alonso Vega, F. Origin and spatial distribution of metals in urban soils. J. Soils Sediments 2017, 17, 1514–1526. [Google Scholar] [CrossRef]
- López, R.; Hallat, J.; Castro, A.; Miras, A.; Burgos, P. Heavy metal pollution in soils and urban-grown organic vegetables in the province of Sevilla, Spain. Biol. Agric. Hortic. 2019, 35, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of Köppen-Geiger Climate Classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.M.; Pérez Alberti, A. Atlas Climático de Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 1999. (In Spanish)
- Martínez Catalán, J.R.; Klein, E.; Pablo Maciá, J.G.; González Lodeiro, F. El complejo de Ordenes. Subdivisión, descripción y discusión sobre su origen. (In Spanish, with English abstract). Cuad. Lab. Xeol. Laxe 1984, 7, 139–210. [Google Scholar]
- Arenas, R.; Rubio-Pascual, F.J.; Díaz-García, F.; Martínez Catalán, J.R. High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): Evidence of subduction and syncollisional decompression. J. Metamorph. Geol. 1995, 13, 141–164. [Google Scholar] [CrossRef]
- Díaz García, F. Geochemical characterization of the basic and acid rocks in the Santiago Unit (NW Spain, Ordenes Complex). Geotectonic implications. Rev. Soc. Geol. Esp. 1990, 3, 261–273, (In Spanish, with English abstract). [Google Scholar]
- Paradelo, R.; Herbón, C.; Barral, M.T. Composition and chemical properties of the soils of the city of Santiago de Compostela, northwestern Spain. J. Environ. Qual. 2021, 50, 7–21. [Google Scholar] [CrossRef]
- Cheburkin, A.K.; Shotyk, W. An Energy-dispersive Miniprobe Multielement Analyzer (EMMA) for direct analysis of Pb and other trace elements in peats. Fresenius J. Anal. Chem. 1996, 354, 688–691. [Google Scholar] [CrossRef]
- Xunta de Galicia. Decree 60/2009 of February 26th on soils potentially contaminated and procedure for the declaration of contaminated soils. D. Of. Galicia 2009, 57, 5920–5936. (In Spanish) [Google Scholar]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 23 March 2021).
- Fox, J.; Bouchet-Valat, M. Rcmdr: R Commander; R Package Version 2.6-1; 2019; Available online: http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/ (accessed on 23 March 2021).
- Macías, F.; Calvo, R. Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza en Suelos de Galicia; Xunta de Galicia: Santiago de Compostela, Spain, 2009. (In Spanish)
- Wong, C.S.C.; Li, X.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yesilonis, I.D.; James, B.R.; Pouyat, R.V.; Momen, B. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH. Environ. Monit. Assess. 2008, 146, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cannon, W.F.; Horton, J.D. Soil geochemical signature of urbanization and industrialization–Chicago, Illinois, USA. Appl. Geochem. 2009, 24, 1590–1601. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Paltseva, A.; Li, I.; Morin, T.; Huot, H.; Egendorf, S.; Su, Z.; Yolanda, R.; Singh, K.; Lee, L.; et al. Trace metal contamination in New York City garden soils. Soil Sci. 2015, 180, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef]
- Brown, S.A.; Chaney, R.L.; Hettiarachchi, G.M. Lead in urban soils: A real or perceived concern for urban agriculture? J. Environ. Qual. 2016, 45, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Pattee, O.H.; Pain, D.J. Lead in the environment. In Handbook of Ecotoxicology; Hoffman, D.J., Rattner, B.A., Burton, G.A., Jr., Cairns, J., Jr., Eds.; CRC Press Inc.: Boca Raton, FL, USA, 2003; pp. 373–408. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- García-Rodeja, E.; Silva, B.; Macías, F. Andosols developed from non-volcanic materials in Galicia, NW Spain. J. Soil Sci. 1987, 38, 573–591. [Google Scholar] [CrossRef]
- Carballas, T.; Rodríguez-Rastrero, M.; Artieda, O.; Gumuzzio, J.; Díaz-Raviña, M.; Martín, A. Soils of the Temperate Humid Zone. In The Soils of Spain; Gallardo, J.F., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 49–144. [Google Scholar]
- Garelick, H.; Jones, H.; Dybowska, A.; Valsami-Jones, E. Arsenic pollution sources. In Reviews of Environmental Contamination Volume 197; Garelick, H., Jones, H., Eds.; Springer: New York, NY, USA, 2009; pp. 17–60. [Google Scholar]
- Paradelo, R.; Villada, A.; Barral, M.T. Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with MSW compost. J. Hazard. Mater. 2011, 188, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Paradelo, R.; Villada, A.; Barral, M.T. Chemical fractionation of trace elements in a metal-rich amphibolite soil amended with municipal solid waste composts. Waste Biomass Valorization 2018, 9, 1935–1943. [Google Scholar] [CrossRef]
- Cruz, N.; Rodrigues, S.M.; Coelho, C.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M. Urban agriculture in Portugal: Availability of potentially toxic elements for plant uptake. Appl. Geochem. 2014, 44, 27–37. [Google Scholar] [CrossRef]
- Entwistle, J.A.; Amaibi, P.M.; Dean, J.R.; Deary, M.E.; Medock, D.; Morton, J.; Bramwell, L. An apple a day? Assessing gardeners’ lead exposure in urban agriculture sites to improve the derivation of soil assessment criteria. Environ. Int. 2019, 122, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Paradelo, R.; Villada, A.; Barral, M.T. Heavy metal uptake of lettuce and ryegrass from urban waste composts. Int. J. Environ. Res. Public Health 2020, 17, 2887. [Google Scholar] [CrossRef]
- Joimel, S.; Cortet, J.; Consalès, J.N.; Branchu, P.; Haudin, C.S.; Morel, J.L.; Schwartz, C. Contribution of chemical inputs on the trace elements concentrations of surface soils in urban allotment gardens. J. Soils Sediments 2021, 21, 328–337. [Google Scholar] [CrossRef]
Name | Latitude | Longitude | Altitude | Land Use | Lithology | |
---|---|---|---|---|---|---|
1 | Carlomagno 1 | 42°53′00″ N | 8°31′23″ W | 290 | Urban grassland | Amphibolite |
2 | Carlomagno 2 | 42°52′52″ N | 8°31′27″ W | 285 | Urban forest | Amphibolite |
3 | Vieiro 1 | 42°52′46″ N | 8°31′38″ W | 235 | Urban grassland | Amphibolite |
4 | Fontiñas 1 | 42°53′02″ N | 8°31′47″ W | 260 | Urban grassland | Schist |
5 | Fontiñas 2 | 42°53′05″ N | 8°31′57″ W | 265 | Urban garden | Schist |
6 | Monte dos Postes | 42°53′17″ N | 8°31′53″ W | 300 | Urban grassland | Schist |
7 | San Caetano | 42°53′24″ N | 8°32′05″ W | 300 | Urban grassland | Schist |
8 | Bouza Brey | 42°53′20″ N | 8°32′21″ W | 275 | Urban grassland | Schist |
9 | Burgo Xixón | 42°53′18″ N | 8°32′34″ W | 250 | Urban grassland | Schist |
10 | Auditorio | 42°53′18″ N | 8°32′41″ W | 235 | Urban grassland | Schist |
11 | Vistalegre 1 | 42°53′14″ N | 8°32′49″ W | 240 | Urban forest | Schist |
12 | Vistalegre 2 | 42°53′08″ N | 8°32′46″ W | 230 | Urban grassland | Schist |
13 | Santa Isabel | 42°53′13″ N | 8°32′59″ W | 225 | Urban garden | Schist |
14 | Espiño | 42°52′59″ N | 8°33′06″ W | 245 | Urban forest | Schist |
15 | Galeras 1 | 42°52′56″ N | 8°33′00″ W | 225 | Urban grassland | Schist |
16 | Galeras 2 | 42°53′00″ N | 8°32′58″ W | 225 | Urban grassland | Schist |
17 | Campo das Hortas | 42°52′47″ N | 8°32′52″ W | 235 | Urban garden | Schist |
18 | Fonseca | 42°52′45″ N | 8°32′45″ W | 245 | Urban grassland | Schist |
19 | Alameda 1 | 42°52′40″ N | 8°32′58″ W | 265 | Urban grassland | Schist |
20 | Alameda 2 | 42°52′42″ N | 8°32′57″ W | 255 | Urban forest | Schist |
21 | Alameda 3 | 42°52′39″ N | 8°32′47″ W | 250 | Urban grassland | Schist |
22 | Parlamento | 42°52′24″ N | 8°32′32″ W | 230 | Urban grassland | Schist |
23 | Granell 1 | 42°51′54″ N | 8°32′48″ W | 215 | Urban grassland | Schist |
24 | Granell 2 | 42°51′51″ N | 8°32′41″ W | 225 | Urban forest | Schist |
25 | Granell 3 | 42°51′59″ N | 8°32′57″ W | 205 | Urban forest | Granite/Schist |
26 | Almaciga 3 | 42°53′11″ N | 8°32′11″ W | 325 | Urban grassland | Schist |
27 | Almáciga 1 | 42°53′06″ N | 8°32′14″ W | 315 | Urban grassland | Gneiss |
28 | Almáciga 2 | 42°53′08″ N | 8°32′13″ W | 320 | Urban garden | Gneiss |
29 | Bonaval 1 | 42°52′58″ N | 8°32′16″ W | 290 | Urban grassland | Gneiss |
30 | Bonaval 2 | 42°53′01″ N | 8°32′17″ W | 300 | Urban forest | Gneiss |
31 | Caramoniña | 42°53′03″ N | 8°32′21″ W | 285 | Urban garden | Gneiss |
32 | Belvís 1 | 42°52′47″ N | 8°32′18″ W | 245 | Urban grassland | Gneiss |
33 | Belvís 2 | 42°52′46″ N | 8°32′17″ W | 250 | Urban garden | Gneiss |
34 | Belvís 3 | 42°52′33″ N | 8°32′20″ W | 225 | Urban forest | Gneiss |
35 | Belvís 4 | 42°52′48″ N | 8°32′20″ W | 245 | Urban garden | Gneiss |
36 | Belvís 5 | 42°52′40″ N | 8°32′21″ W | 235 | Urban grassland | Gneiss |
37 | Paxonal 1 | 42°52′07″ N | 8°32′36″ W | 205 | Urban grassland | Gneiss |
38 | Paxonal 2 | 42°52′05″ N | 8°32′37″ W | 205 | Urban garden | Gneiss |
39 | Campus 1 | 42°52′34″ N | 8°33′31″ W | 245 | Urban grassland | Granite |
40 | Campus 2 | 42°52′36″ N | 8°33′15″ W | 240 | Urban grassland | Granite/Schist |
41 | Campus 3 | 42°52′41″ N | 8°33′22″ W | 235 | Urban forest | Granite/Schist |
42 | Campus 4 | 42°52′26″ N | 8°33′32″ W | 215 | Urban forest | Granite/Schist |
43 | Campus 5 | 42°52′32″ N | 8°33′31″ W | 240 | Urban forest | Granite |
44 | Campus 6 | 42°52′37″ N | 8°33′34″ W | 240 | Urban grassland | Granite/Schist |
45 | Campus 7 | 42°52′26″ N | 8°33′15″ W | 230 | Urban grassland | Schist |
46 | Campus 8 | 42°52′23″ N | 8°33′45″ W | 200 | Urban forest | Granite |
47 | San Lourenzo | 42°52′42″ N | 8°33′23″ W | 230 | Urban forest | Granite/Schist |
48 | Barcelona | 42°52′18″ N | 8°33′37″ W | 210 | Urban grassland | Granite |
49 | Santa Marta 1 | 42°52′08″ N | 8°33′21″ W | 240 | Urban grassland | Granite |
50 | Santa Marta 2 | 42°51′57″ N | 8°33′30″ W | 210 | Urban garden | Granite |
51 | Santa Marta 3 | 42°51′53″ N | 8°33′47″ W | 190 | Urban garden | Granite |
52 | Multiusos | 42°52′28″ N | 8°31′51″ W | 225 | Peri-urban cropland | Amphibolite |
53 | Lermo | 42°53′33″ N | 8°33′00″ W | 230 | Peri-urban cropland | Schist |
54 | Brañas | 42°52′17″ N | 8°32′20″ W | 210 | Peri-urban cropland | Gneiss |
55 | Botánico | 42°52′39″ N | 8°33′42″ W | 205 | Peri-urban cropland | Granite |
Pb | Cu | Zn | Ni | Cr | As | |
---|---|---|---|---|---|---|
GRL—lithological background | 55 | 45 (90) | 100 | 65 (100) | 80 (240) | 45 |
GRL—ecosystem protection | 80 | 50 (90) | 200 | 75 (100) | 80 (240) | 50 |
GRL—other uses | 100 | 50 (90) | 300 | 75 (100) | 80 (240) | 50 |
GRL—urban use | 100 | 100 | 500 | 100 | 100 (240) | 50 |
GRL—industrial use | 500 | 200 | 1000 | 200 | 300 | 50 |
Soil | Pb | Cu | Zn | Ni | Cr | As |
---|---|---|---|---|---|---|
1 | 72 ± 3 | 188 ± 5 | 197 ± 9 | 91 ± 20 | 172 ± 22 | 20 ± 6 |
2 | 40 ± 6 | 99 ± 4 | 136 ± 9 | 65 ± 4 | 175 ± 4 | 13 ± 1 |
3 | 45 ± 3 | 90 ± 9 | 123 ± 4 | 70 ± 10 | 221 ± 10 | 32 ± 6 |
4 | 31 ± 1 | 56 ± 8 | 75 ± 8 | 68 ± 12 | 163 ± 24 | 24 ± 7 |
5 | 36 ± 4 | 21 ± 1 | 65 ± 6 | 16 ± 2 | 37 ± 10 | 18 ± 1 |
6 | 20 ± 3 | 47 ± 3 | 76 ± 4 | 41 ± 5 | 113 ± 7 | 17 ± 3 |
7 | 90 ± 5 | 41 ± 7 | 95 ± 8 | 25 ± 3 | 82 ± 13 | 21 ± 2 |
8 | 53 ± 6 | 41 ± 8 | 96 ± 11 | 28 ± 2 | 277 ± 7 | 138 ± 32 |
9 | 103 ± 3 | 49 ± 2 | 99 ± 7 | 31 ± 5 | 75 ± 15 | 45 ± 6 |
10 | 65 ± 1 | 63 ± 3 | 125 ± 0.3 | 36 ± 3 | 80 ± 13 | 33 ± 1 |
11 | 101 ± 6 | 52 ± 4 | 87 ± 10 | 34 ± 5 | 83 ± 13 | 27 ± 3 |
12 | 111 ± 4 | 46 ± 3 | 115 ± 5 | 29 ± 6 | 66 ± 17 | 44 ± 1 |
13 | 102 ± 6 | 75 ± 5 | 197 ± 13 | 37 ± 4 | 92 ± 7 | 58 ± 4 |
14 | 68 ± 3 | 29 ± 3 | 95 ± 27 | 37 ± 5 | 94 ± 8 | 20 ± 2 |
15 | 85 ± 5 | 47 ± 6 | 93 ± 8 | 38 ± 6 | 60 ± 19 | 205 ± 6 |
16 | 56 ± 6 | 38 ± 7 | 99 ± 14 | 29 ± 7 | 72 ± 3 | 35 ± 2 |
17 | 289 ± 37 | 151 ± 6 | 294 ± 23 | 30 ± 5 | 38 ± 2 | 33 ± 6 |
18 | 137 ± 15 | 81 ± 3 | 116 ± 6 | 34 ± 3 | 100 ± 13 | 19 ± 2 |
19 | 135 ± 5 | 84 ± 6 | 130 ± 4 | 26 ± 3 | 41 ± 5 | 34 ± 4 |
20 | 105 ± 2 | 40 ± 2 | 104 ± 5 | 25 ± 2 | 57 ± 12 | 29 ± 3 |
21 | 286 ± 22 | 55 ± 8 | 84 ± 6 | 11 ± 2 | 40 ± 8 | 27 ± 5 |
22 | 37 ± 1 | 66 ± 1 | 123 ± 6 | 45 ± 5 | 124 ± 12 | 24 ± 3 |
23 | 92 ± 37 | 29 ± 1 | 65 ± 5 | 28 ± 0.4 | 71 ± 21 | 35 ± 3 |
24 | 40 ± 6 | 34 ± 4 | 69 ± 2 | 34 ± 2 | 68 ± 10 | 27 ± 2 |
25 | 57 ± 10 | 28 ± 6 | 59 ± 7 | 24 ± 2 | 88 ± 10 | 35 ± 2 |
26 | 83 ± 3 | 79 ± 22 | 131 ± 8 | 18 ± 3 | 57 ± 1 | 38 ± 0.4 |
27 | 32 ± 6 | 20 ± 6 | 68 ± 4 | 17 ± 5 | 22 ± 12 | 58 ± 3 |
28 | 58 ± 1 | 23 ± 2 | 83 ± 5 | 11 ± 2 | 17 ± 87 | 60 ± 2 |
29 | 78 ± 4 | 69 ± 9 | 80 ± 7 | 13 ± 1 | 23 ± 8 | 43 ± 1 |
30 | 78 ± 5 | 25 ± 5 | 55 ± 7 | 13 ± 3 | 29 ± 15 | 55 ± 1 |
31 | 156 ± 38 | 157 ± 58 | 144 ± 12 | 19 ± 2 | 28 ± 5 | 44 ± 8 |
32 | 268 ± 28 | 109 ± 7 | 167 ± 4 | 23 ± 3 | 48 ± 20 | 40 ± 8 |
33 | 155 ± 8 | 64 ± 2 | 161 ± 9 | 16 ± 4 | 40 ± 7 | 33 ± 4 |
34 | 82 ± 14 | 43 ± 3 | 93 ± 7 | 11 ± 1 | 22 ± 11 | 35 ± 4 |
35 | 293 ± 10 | 124 ± 25 | 248 ± 2 | 23 ± 1 | 50 ± 11 | 46 ± 3 |
36 | 155 ± 12 | 76 ± 5 | 151 ± 7 | 20 ± 3 | 31 ± 9 | 37 ± 3 |
37 | 93 ± 1 | 65 ± 6 | 107 ± 7 | 18 ± 5 | 49 ± 4 | 31 ± 4 |
38 | 72 ± 2 | 46 ± 2 | 123 ± 9 | 28 ± 5 | 62 ± 18 | 40 ± 1 |
39 | 35 ± 3 | 17 ± 1 | 70 ± 9 | 22 ± 5 | 43 ± 2 | 18 ± 3 |
40 | 62 ± 5 | 29 ± 4 | 86 ± 9 | 19 ± 4 | 44 ± 10 | 33 ± 2 |
41 | 61 ± 3 | 30 ± 1 | 90 ± 13 | 26 ± 5 | 63 ± 4 | 17 ± 2 |
42 | 52 ± 2 | 29 ± 4 | 91 ± 3 | 20 ± 7 | 49 ± 3 | 33 ± 2 |
43 | 41 ± 0.4 | 28 ± 3 | 88 ± 5 | 24 ± 5 | 47 ± 9 | 19 ± 2 |
44 | 48 ± 1 | 27 ± 1 | 77 ± 4 | 25 ± 1 | 54 ± 17 | 23 ± 1 |
45 | 39 ± 4 | 26 ± 2 | 72 ± 10 | 23 ± 3 | 51 ± 8 | 19 ± 1 |
46 | 62 ± 1 | 30 ± 3 | 78 ± 14 | 17 ± 6 | 33 ± 9 | 20 ± 2 |
47 | 85 ± 1 | 48 ± 3 | 110 ± 5 | 27 ± 1 | 61 ± 8 | 42 ± 1 |
48 | 55 ± 5 | 34 ± 3 | 105 ± 2 | 26 ± 6 | 58 ± 2 | 30 ± 3 |
49 | 63 ± 5 | 29 ± 1 | 91 ± 12 | 20 ± 3 | 41 ± 8 | 25 ± 5 |
50 | 58 ± 2 | 28 ± 2 | 85 ± 6 | 18 ± 1 | 43 ± 18 | 32 ± 3 |
51 | 80 ± 14 | 41 ± 2 | 115 ± 6 | 24 ± 2 | 53 ± 7 | 30 ± 3 |
52 | 60 ± 3 | 91 ± 10 | 109 ± 5 | 70 ± 4 | 274 ± 33 | 14 ± 1 |
53 | 71 ± 1 | 72 ± 9 | 122 ± 18 | 30 ± 3 | 71 ± 11 | 38 ± 6 |
54 | 566 ± 38 | 126 ± 5 | 484 ± 7 | 36 ± 5 | 65 ± 7 | 44 ± 1 |
55 | 52 ± 3 | 38 ± 8 | 89 ± 4 | 24 ± 7 | 93 ± 10 | 22 ± 3 |
Mean | 97 | 58 | 116 | 29 | 74 | 37 |
Median | 71 | 46 | 96 | 25 | 58 | 33 |
Standard deviation | 91 | 37 | 67 | 16 | 56 | 29 |
Minimum | 20 | 17 | 55 | 11 | 17 | 13 |
Maximum | 566 | 188 | 484 | 91 | 277 | 205 |
Average content in natural soils a | 29 ± 15 | 21 ± 14 (50 ± 32) | 60 ± 29 | 56 ± 25 (66 ± 32) | 80 ± 72 (129 ± 79) | 21 ± 20 |
pHw | pHKCl | Clay | C | CEC | Fetotal | FeDCB | Feox | Pb | Cu | Zn | Ni | Cr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | 0.10 | 0.11 | 0.02 | −0.08 | −0.01 | −0.21 | −0.15 | 0.15 | 1 | ||||
Cu | 0.36 ** | 0.36 ** | 0.50 *** | −0.08 | 0.10 | 0.40 | 0.42 *** | 0.41 | 0.55 *** | 1 | |||
Zn | 0.27 * | 0.25 | 0.30 * | −0.05 | 0.11 | 0.11 | 0.13 | 0.36 ** | 0.84 *** | 0.70 *** | 1 | ||
Ni | 0.05 | 0.02 | 0.75 *** | 0.10 | 0.13 | 0.94 *** | 0.90 *** | 0.50 *** | −0.11 | 0.48 | 0.20 | 1 | |
Cr | 0.01 | 0.02 | 0.51 *** | 0.15 | 0.11 | 0.78 *** | 0.76 *** | 0.30 * | −0.18 | 0.24 ** | 0.02 | 0.75 *** | 1 |
As | −0.001 | −0.06 | −0.20 | −0.16 | −0.06 | −0.13 | −0.17 | −0.11 | 0.06 | −0.03 | 0.03 | −0.09 | 0.08 |
Igeo | |||||||
---|---|---|---|---|---|---|---|
Soil | Pb | Cu | Zn | Ni | Cr | As | Soil Class |
1 | 0.6 | 1.3 | 1.0 | −0.1 | −0.2 | 0.4 | 2 |
2 | −0.3 | 0.4 | 0.5 | −0.6 | −0.1 | −0.2 | 1 |
3 | −0.1 | 0.3 | 0.3 | −0.5 | 0.2 | 1.1 | 2 |
4 | −0.6 | 0.6 | −0.4 | 0.1 | 1.1 | −0.4 | 2 |
5 | −0.4 | −0.8 | −0.6 | −1.9 | −1.0 | −0.9 | 0 |
6 | −1.2 | 0.4 | −0.4 | −0.6 | 0.6 | −1.0 | 1 |
7 | 1.0 | 0.2 | −0.1 | −1.3 | 0.2 | −0.7 | 1 |
8 | 0.2 | 0.2 | 0.0 | −1.2 | 1.9 | 2.1 | 3 |
9 | 1.2 | 0.4 | 0.0 | −1.0 | 0.0 | 0.5 | 2 |
10 | 0.5 | 0.8 | 0.3 | −0.8 | 0.1 | 0.0 | 1 |
11 | 1.1 | 0.5 | −0.2 | −0.8 | 0.2 | −0.3 | 2 |
12 | 1.3 | 0.4 | 0.2 | −1.1 | −0.1 | 0.4 | 2 |
13 | 1.1 | 1.1 | 1.0 | −0.7 | 0.3 | 0.8 | 2 |
14 | 0.5 | −0.3 | −0.1 | −0.7 | 0.4 | −0.8 | 1 |
15 | 0.9 | 0.4 | −0.1 | −0.7 | −0.3 | 2.6 | 3 |
16 | 0.3 | 0.1 | 0.0 | −1.1 | 0.0 | 0.1 | 1 |
17 | 2.6 | 2.1 | 1.6 | −1.0 | −1.0 | 0.0 | 3 |
18 | 1.6 | 1.2 | 0.2 | −0.9 | 0.4 | −0.8 | 2 |
19 | 1.5 | 1.2 | 0.4 | −1.2 | −0.4 | 0.1 | 2 |
20 | 1.2 | 0.1 | 0.1 | −1.3 | −0.1 | −0.2 | 2 |
21 | 2.6 | 0.6 | −0.2 | −2.4 | −0.9 | −0.3 | 3 |
22 | −0.3 | 0.9 | 0.3 | −0.5 | −0.8 | −0.4 | 1 |
23 | 1.0 | −0.3 | −0.6 | −1.2 | 0.0 | 0.1 | 1 |
24 | −0.2 | −0.1 | −0.5 | −0.9 | −0.1 | −0.3 | 0 |
25 | 0.3 | −0.4 | −0.7 | −1.4 | 0.3 | 0.1 | 1 |
26 | 0.8 | 1.1 | 0.4 | −1.8 | −0.4 | 0.2 | 2 |
27 | −0.5 | 0.4 | −0.3 | −1.1 | −0.5 | 1.7 | 2 |
28 | 0.4 | 0.6 | 0.0 | −1.7 | −0.8 | 1.7 | 2 |
29 | 0.8 | 2.2 | 0.0 | −1.5 | −0.4 | 1.3 | 3 |
30 | 0.8 | 0.8 | −0.6 | −1.4 | −0.1 | 1.6 | 2 |
31 | 1.8 | 3.4 | 0.8 | −0.9 | −0.1 | 1.3 | 4 |
32 | 2.6 | 2.9 | 1.0 | −0.7 | 0.7 | 1.2 | 3 |
33 | 1.8 | 2.1 | 1.0 | −1.2 | 0.4 | 0.9 | 3 |
34 | 0.9 | 1.5 | 0.2 | −1.7 | −0.5 | 1.0 | 2 |
35 | 2.7 | 3.0 | 1.6 | −0.6 | 0.7 | 1.4 | 4 |
36 | 1.8 | 2.3 | 0.9 | −0.8 | 0.0 | 1.1 | 3 |
37 | 1.0 | 2.1 | 0.4 | −1.0 | 0.7 | 0.8 | 3 |
38 | 0.7 | 1.6 | 0.6 | −0.4 | 1.0 | 1.2 | 2 |
39 | −0.4 | 0.2 | −0.2 | −0.7 | 0.5 | 0.0 | 1 |
40 | 0.5 | 1.0 | 0.1 | −0.9 | 0.5 | 0.9 | 1 |
41 | 0.4 | 1.0 | 0.1 | −0.5 | 1.1 | −0.1 | 2 |
42 | 0.2 | 0.9 | 0.1 | −0.9 | 0.7 | 0.9 | 1 |
43 | −0.1 | 0.9 | 0.1 | −0.6 | 0.6 | 0.1 | 1 |
44 | 0.1 | 0.9 | −0.1 | −0.5 | 0.8 | 0.3 | 1 |
45 | −0.2 | 0.8 | −0.2 | −0.7 | 0.8 | 0.1 | 1 |
46 | 0.5 | 1.0 | −0.1 | −1.1 | 0.1 | 0.2 | 2 |
47 | 0.9 | 1.7 | 0.4 | −0.4 | 1.0 | 1.2 | 2 |
48 | 0.3 | 1.2 | 0.3 | −0.4 | 1.0 | 0.7 | 2 |
49 | 0.5 | 0.9 | 0.1 | −0.9 | 0.5 | 0.5 | 1 |
50 | 0.4 | 0.9 | 0.0 | −1.0 | 0.5 | 0.8 | 1 |
51 | 0.8 | 1.5 | 0.5 | −0.6 | 0.8 | 0.8 | 2 |
52 | 0.3 | 0.3 | 0.1 | −0.5 | 0.5 | −0.1 | 1 |
53 | 0.6 | 1.0 | 0.3 | −1.0 | 0.0 | 0.2 | 2 |
54 | 3.7 | 3.1 | 2.6 | 0.0 | 1.1 | 1.3 | 4 |
55 | 0.2 | 1.3 | 0.1 | −0.6 | 1.6 | 0.3 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbón, C.; Barral, M.T.; Paradelo, R. Potentially Toxic Trace Elements in the Urban Soils of Santiago de Compostela (Northwestern Spain). Appl. Sci. 2021, 11, 4211. https://doi.org/10.3390/app11094211
Herbón C, Barral MT, Paradelo R. Potentially Toxic Trace Elements in the Urban Soils of Santiago de Compostela (Northwestern Spain). Applied Sciences. 2021; 11(9):4211. https://doi.org/10.3390/app11094211
Chicago/Turabian StyleHerbón, Cecilia, María Teresa Barral, and Remigio Paradelo. 2021. "Potentially Toxic Trace Elements in the Urban Soils of Santiago de Compostela (Northwestern Spain)" Applied Sciences 11, no. 9: 4211. https://doi.org/10.3390/app11094211
APA StyleHerbón, C., Barral, M. T., & Paradelo, R. (2021). Potentially Toxic Trace Elements in the Urban Soils of Santiago de Compostela (Northwestern Spain). Applied Sciences, 11(9), 4211. https://doi.org/10.3390/app11094211