Color Texture Image Complexity—EEG-Sensed Human Brain Perception vs. Computed Measures
Abstract
:1. Introduction
2. Related Works
3. Proposed Methodology
4. EEG Experiment and Analysis
4.1. Stimuli and Procedure
4.2. Participants and Materials
4.3. EEG Analysis
5. Subjective Experiment
6. Color Image Complexity Measures
6.1. Color Entropy, CE
6.2. Color Fractal Dimension, CFD
7. Experimental Results
7.1. Subjective Experiment Analysis
7.2. Image Complexity Measures vs. Subjective Evaluation—Correlation Analysis
7.2.1. Natural Images
7.2.2. Fractal Images
7.3. EEG Experiment Analysis
7.3.1. Natural Images
ERPs vs. CE
ERPs vs. CFD
ERPs vs. Participants Scoring
- -
- participant P1: 44.3% images are considered as low complexity, 40.2% as medium: and 15.5% as high (resulting in unbalanced classes),
- -
- participant P2: low: 18.6%; medium: 67%; high: 14.4% (unbalanced),
- -
- participant P3: low: 0%; medium: 37.1%; high: 62.9% (unbalanced),
- -
- participant P4: low: 20.6%; medium: 13.4%; high: 66% (unbalanced),
- -
- participant P5: low: 27.8%; medium: 43.3%; high: 28.9% (unbalanced),
- -
- participant P6: low: 2%; medium: 25.8%; high: 72.2% (unbalanced),
- -
- participant P7: low: 1%; medium: 22.7%; high: 76.3% (unbalanced),
- -
- participant P8: low: 6.2%; medium: 68%; high: 25.8% (unbalanced).
Spectral Activity vs. CE
Spectral Activity vs. CFD
- -
- participant P2: Ch P3, band,
- -
- participant P3: Ch T4, band,
- -
- participant P6: Ch T4, band, ; band,
- -
- participant P7: Ch P4, band, ; Ch T4, band,
7.3.2. Fractal Images
ERPs vs. CE
- -
- participant P1: Ch P3, N300, ; P300, ; 2nd P3b ; Ch P4, P300, ; 2nd P3b
- -
- participant P4: Ch P3, N300, ; 2nd P3b ; Ch P4, P200, ; 2nd P3b
- -
- participant P6: Ch P3, P300,
ERPs vs. CFD
- -
- participant P4: Ch P3, N300, ; 2nd P3b ; Ch P4, N300, ; 2nd P3b
- -
- participant P8: Ch P3, P300, ; Ch P4, P300,
Spectral Activity vs. Participants Scoring
- -
- P1: low: 30.3%; medium: 41.4%; high: 28.3% (∼balanced).
- -
- P2: low: 4%; medium: 87.9%; high: 8.1% (unbalanced).
- -
- P3: low: 0%; medium: 63.6%; high: 36.4% (unbalanced).
- -
- P4: low: 25.3%; medium: 30.3%; high: 44.4% (∼balanced).
- -
- P5: low: 81.8%; medium: 10.1%; high: 8.1% (unbalanced).
- -
- P6: low: 61.6%; medium: 25.3%; high: 13.1% (unbalanced).
- -
- P7: low: 0%; medium: 100%; high: 0% (unbalanced).
- -
- P8: low: 1%; medium: 13.1%; high: 85.9% (unbalanced).
8. Discussion
9. Conclusions and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalography |
BCI | Brain-Computer Interfaces |
ERPs | Event-Related Potentials |
CFD | Color Fractal Dimension |
CE | Color Entropy |
CFD | Color Fractal Dimension |
Uni | one-color image |
Nat | color natural texture image |
Frac | color fractal texture image |
P1, P2, P3, P4, P5, P6, P7, P8 | participants indices |
Pearson correlation | |
Kendall’s Tau correlation | |
Spearman’s rank correlation | |
GA | Grand Average (mean over all participants and trials) |
P200 | positive peak of ERP potential appearing 200 ms after stimulus |
P3/P300 | ERP (positive peak) appearing 300 ms after stimulus |
N3/N300 | ERP (negative peak) appearing 300 ms after stimulus |
P300b/P3b | ERP cognitive component (positive peak) appearing later >300 ms |
alpha frequency EEG band (6–12 Hz) | |
beta frequency EEG band (18–22 Hz) | |
sbj. | subjective evaluation scoring |
ex. CE–N3 | CE measure versus N3 potential |
Ch P3, Ch P4 | EEG channels from brain parietal area |
Ch T3, Ch T4 | EEG channels from brain temporal area |
Ch Fz | EEG channels from brain frontal area |
Appendix A
References
- Poltavski, D.V. The use of single-electrode wireless EEG in biobehavioral investigations. In Mobile Health Technologies; Springer: Berlin, Germnay, 2015; pp. 375–390. [Google Scholar]
- Casson, A.J. Wearable EEG and beyond. In Biomedical Engineering Letters; Springer: Berlin, Germany, 2019; Volume 9, pp. 53–71. [Google Scholar]
- Allison, B.Z.; Dunne, S.; Leeb, R.; Millán, J.R.; Nijholt, A. Recent and upcoming BCI progress: Overview, analysis, and recommendations. In Towards Practical Brain-Computer Interfaces; Springer: Berlin, Germany, 2012; pp. 1–13. [Google Scholar]
- Hinrichs, H.; Scholz, M.; Baum, A.K.; Kam, J.W.Y.; Knight, R.T.; Heinze, H.J. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Guger, C.; Krausz, G.; Allison, B.Z.; Edlinger, G. Comparison of dry and gel based electrodes for P300 brain–computer interfaces. Front. Neurosci. 2012, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, M.; Temko, A.; Bocchino, A.; O’Mahony, C.; Boylan, G.; Popovici, E. Analysis of a low-cost EEG monitoring system and dry electrodes toward clinical use in the neonatal ICU. Sensors 2019, 19, 2637. [Google Scholar] [CrossRef] [Green Version]
- Jackson, G.; Radhu, N.; Sun, Y.; Tallevi, K.; Ritvo, P.; Daskalakis, Z.J.; Grundlehner, B.; Penders, J.; Cafazzo, J.A. Comparative Evaluation of an Ambulatory EEG Platform vs. Clinical Gold Standard. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka International Convention Center, Osaka, Japan, 3–7 July 2013; pp. 1222–1225. [Google Scholar]
- Paszkiel, S.; Hunek, W.; Shylenko, A. Project and Simulation of a Portable Device for Measuring Bioelectrical Signals from the Brain for States Consciousness Verification with Visualization on LEDs. In Proceedings of the International Conference on Automation, Warsaw, Poland, 2–4 March 2016; Springer: Cham, Switzerland, 2016; pp. 25–35. [Google Scholar]
- Mihajlović, V.; Grundlehner, B.; Vullers, R.; Penders, J. Wearable, wireless EEG solutions in daily life applications: What are we missing? IEEE J. Biomed. Health Inform. 2014, 19, 6–21. [Google Scholar] [CrossRef]
- Niedermeyer, E.; da Silva, F.H.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PN, USA, 2005; pp. 1–13. [Google Scholar]
- Jackson, G. Towards a Wireless EEG System for Ambulatory Mental Health Applications. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
- Noachtar, S.; Rémi, J. The role of EEG in epilepsy: A critical review. Epilepsy Behav. 2009, 15, 22–33. [Google Scholar] [CrossRef]
- Vidgeon, S.D.; Strong, A.J. Multimodal cerebral monitoring in traumatic brain injury. J. Intensive Care Soc. 2011, 12, 126–133. [Google Scholar] [CrossRef]
- Ziai, W.C.; Schlattman, D.; Llinas, R.; Venkatesha, S.; Truesdale, M.; Schevchenko, A.; Kaplan, P.W. Emergent EEG in the emergency department in patients with altered mental states. Clin. Neurophysiol. 2012, 123, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Lenartowicz, A.; Loo, S.K. Use of EEG to diagnose ADHD. Curr. Psychiatry Rep. 2014, 16, 498. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, P. Visual cognition. Vis. Res. 2011, 51, 1538–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenholtz, R. Texture Perception. In Oxford Handbook of Perceptual Organization; Oxford University Press: Oxford, UK, 2014; Volume 167, p. 186. [Google Scholar]
- Sand, T.; Bjørk, M.H.; Vaaler, A.E. Is EEG a useful test in adult psychiatry? Tidsskr. Nor Laegeforen. 2013, 133, 1200–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutros, N.N. The Electroencephalogram in the Management of Psychiatric Conditions. Psychiatr. Times 2013, 30. [Google Scholar]
- Hu, L.; Zhang, Z. Evolving EEG signal processing techniques in the age of artificial intelligence. Brain Sci. Adv. 2020, 6, 159–161. [Google Scholar] [CrossRef]
- Paszkiel, S.; Szpulak, P. Methods of acquisition, archiving and biomedical data analysis of brain functioning. In Proceedings of the International Scientific Conference BCI 2018 Opole, Opole, Poland, 13–14 March 2018; Springer: Cham, Switzerland, 2018; pp. 158–171. [Google Scholar]
- Yadav, A.K. Survey on content-based image retrieval and texture analysis with applications. Int. J. Educ. Res. 2014, 77, 41–50. [Google Scholar] [CrossRef]
- Ivanovici, M.; Coliban, R.M.; Hatfaludi, C.; Nicolae, I.E. Color Image Complexity versus Over-Segmentation: A Preliminary Study on the Correlation between Complexity Measures and Number of Segments. J. Imaging 2020, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, A.; Sheehy, N.; Sawey, M. Measuring Icon Complexity: An Automated Analysis. In Behavior Research Methods, Instruments & Computers; Springer: Berlin, Germany, 2003; Volume 35, pp. 334–342. [Google Scholar]
- Reinecke, K.; Yeh, T.; Miratrix, L.; Mardiko, R.; Zhao, Y.; Liu, J.; Gajos, K.Z. Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; pp. 2049–2058. [Google Scholar]
- Donderi, D.C. Visual complexity: A review. Psychol. Bull. 2006, 132, 73. [Google Scholar] [CrossRef] [Green Version]
- Huo, J. An Image Complexity Measurement Algorithm with Visual Memory Capacity and an Eeg Study. In Proceedings of the 2016 SAI Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 264–268. [Google Scholar]
- Shafahi, A.; Huang, W.R.; Studer, C.; Feizi, S.; Goldstein, T. Are adversarial examples inevitable? arXiv 2018, arXiv:1809.02104. [Google Scholar]
- Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. Selective audio adversarial example in evasion attack on speech recognition system. IEEE Trans. Inf. Forensics Secur. 2019, 15, 526–538. [Google Scholar] [CrossRef]
- Kwon, H.; Yoon, H.; Park, K.W. Acoustic-decoy: Detection of adversarial examples through audio modification on speech recognition system. Neurocomputing 2020, 417, 357–370. [Google Scholar] [CrossRef]
- Scha, R.; Bod, R. Computationele esthetica. Inf. Informatiebeleid 1993, 11, 54–63. [Google Scholar]
- Heylighen, F. The Growth of Structural and Functional Complexity during Evolution. In The Evolution of Complexity; KluwerAcademic: Dordrecht, The Netherlands, 1999; pp. 17–44. [Google Scholar]
- Guo, X.; Asano, C.M.; Asano, A.; Kurita, T.; Li, L. Analysis of texture characteristics associated with visual complexity perception. Opt. Rev. 2012, 19, 306–314. [Google Scholar] [CrossRef]
- Ciocca, G.; Corchs, S.; Gasparini, F. Genetic programming approach to evaluate complexity of texture images. J. Electron. Imaging 2016, 25, 061408. [Google Scholar] [CrossRef]
- Chi, J.; Yu, X.; Zhang, Y.; Wang, H. A novel local human visual perceptual texture description with key feature selection for texture classification. Math. Probl. Eng. 2019. [Google Scholar] [CrossRef]
- Ivanovici, M.; Richard, N. Entropy Versus Fractal Complexity for Computer-Generated Color Fractal Images. In Proceedings of the 4th CIE Expert Symposium on Colour and Visual Appearance, Prague, Czech Republic, 6–7 September 2016; pp. 432–437. [Google Scholar]
- Kisan, S.; Mishra, S.; Mishra, D. A Novel Method to Estimate Fractal Dimension of Color Images. In Proceedings of the 11th International Conference on Industrial and Information Systems (ICIIS 2016), Roorkee, India, 3–4 December 2016; pp. 692–697. [Google Scholar]
- Zunino, L.; Ribeiro, H.V. Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane. Chaos Solitons Fractals 2016, 91, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Perkiö, J.; Hyvärinen, A. Modelling Image Complexity by Independent Component Analysis, with Application to Content-Based Image Retrieval. In Proceedings of the International Conference on Artificial Neural Networks, Munich, Germany, 17–19 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 704–714. [Google Scholar]
- Panigrahy, C.; Seal, A.; Mahato, N.K. Fractal dimension of synthesized and natural color images in lab space. Pattern Anal. Appl. 2020, 23, 819–836. [Google Scholar] [CrossRef]
- Ciocca, G.; Corchs, S.; Gasparini, F. Complexity Perception of Texture Images. In Proceedings of the International Conference on Image Analysis and Processing, Genova, Italy, 7–11 September 2015. [Google Scholar]
- Hagerhall, C.M.; Laike, T.; Taylor, R.P.; Küller, M.; Küller, R.; Martin, T.P. Investigations of human eeg response to viewing fractal patterns. Perception 2008, 37, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Spehar, B.; Hagerhall, C.; Van Donkelaar, P. Perceptual and physiological responses to jackson pollock’s fractals. Front. Hum. Neurosci. 2011, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Corchs, S.E.; Ciocca, G.; Bricolo, E.; Gasparini, F. Predicting complexity perception of real world images. PLoS ONE 2016, 11, e0157986. [Google Scholar]
- Gartus, A.; Leder, H. Predicting perceived visual complexity of abstract patterns using computational measures: The influence of mirror symmetry on complexity perception. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahane, A.A.; Subramanian, A. Measures of Complexity for Large Scale Image Datasets. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020; pp. 282–287. [Google Scholar]
- Russakoff, D.B.; Tomasi, C.; Rohlfing, T.; Maurer, C.R. Image Similarity using Mutual Information of Regions. In Proceedings of the European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; pp. 596–607. [Google Scholar]
- Nicolae, I.E.; Ivanovici, M. Preparatory Experiments Regarding Human Brain Perception and Reasoning of Image Complexity for Synthetic Color Fractal and Natural Texture Images via EEG. Appl. Sci. 2021, 11, 164. [Google Scholar] [CrossRef]
- Ivanovici, M. Fractal Dimension of Color Fractal Images With Correlated Color Components. IEEE Trans. Image Process. 2020, 29, 8069–8082. [Google Scholar] [CrossRef]
- Nicolae, I.E. PerPlex EEG.zip. Dataset. Figshare. 2020. Available online: https://figshare.com/articles/dataset/PerPlex_EEG_zip/13489215/1 (accessed on 30 April 2021).
- Blankertz, B.; Acqualagna, L.; Dähne, S.; Haufe, S.; Schultze-Kraft, M.; Sturm, I.; Ušćumlic, M.; Wenzel, M.A.; Curio, G.; Müller, K.R. The berlin brain-computer interface: Progress beyond communication and control. Front. Neurosci. 2016, 10, 530. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.A. Mathematical Theory of Communication; Nokia Bell Labs: Holmdel, NJ, USA, 1948; Volume 318, pp. 379–423. [Google Scholar]
- Ivanovici, M.; Richard, N. Fractal dimension of color fractal images. IEEE Trans. Image Process. 2011, 20, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, S. How to ID Lion. Mara Predator Project 2009. Available online: http://marapredatorproject.blogspot.com/2009/01/how-to-id-lion.html (accessed on 30 April 2021).
- Humeau-Heurtier, A. The multiscale entropy algorithm and its variants: A review. Entropy 2015, 17, 3110–3123. [Google Scholar] [CrossRef] [Green Version]
- Zhou, E.Y.; Damiano, C.; Wilder, J.; Walther, D.B. Measuring complexity of images using Multiscale Entropy. J. Vis. 2019, 19, 96a. [Google Scholar] [CrossRef]
- Mejia, J.; Ochoa, A.; Mederos, B. Reconstruction of PET images using cross-entropy and field of experts. Entropy 2019, 21, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Jia, H.; Ma, J. A Chaotic Electromagnetic Field Optimization Algorithm Based on Fuzzy Entropy for Multilevel Thresholding Color Image Segmentation. Entropy 2019, 21, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, M. Entropy-based algorithms in the analysis of biomedical signals. Studies in Logic. Gramm. Rhetor. 2015, 43, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Shu, H.; Liu, Z.; Shao, Z.; Li, C.; Huang, M.; Huang, J. Nonrigid Medical Image Registration Using an Information Theoretic Measure Based on Arimoto Entropy with Gradient Distributions. Entropy 2019, 21, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH freeman: New York, NY, USA, 1983; Volume 173. [Google Scholar]
- Barnsley, M.F.; Robert L Devaney, R.L.; Mandelbrot, B.B.; Peitgen, H.O.; Saupe, D.; Voss, R.F.; Fisher, Y.; McGuire, M. The Science of Fractal Images; Springer: Berlin, Germany, 1988; Volume 1, p. 312. [Google Scholar]
- Fisher, Y.; McGuire, M.; Voss, R.F.; Barnsley, M.F.; Devaney, R.L.; Mandelbrot, B.B. The Science of Fractal Images; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Falconer, K. Mathematical foundations and applications. In Fractal Geometry; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Voss, R.F. Random fractals: Characterization and measurement. In Scaling Phenomena in Disordered Systems; Springer: Berlin, Germany, 1991; pp. 1–11. [Google Scholar]
- Barbara, I.; Dean, S. Introductory Statistics. Available online: https://openstax.org/books/introductory-statistics/pages/12-6-outliers#eip-idm31993488 (accessed on 15 May 2020).
- Verma, J.P. Data Analysis in Management with SPSS Software; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Nica, M. Principles of Business Statistics. Available online: http://www.opentextbooks.org.hk/ditatopic/9498 (accessed on 8 August 2020).
- Polich, J. Updating p300: An integrative theory of p3a and p3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [Green Version]
- Szczepanski, S.M.; Konen, C.S.; Kastner, S. Mechanisms of spatial attention control in frontal and parietal cortex. J. Neurosci. 2010, 30, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Basile, L.F.H.; Sato, J.; Alvarenga, M.Y.; Nelson, H.J.; Pasquini, H.A.; Alfenas, W.; Machado, S.; Velasques, B.; Ribeiro, P.; Piedade, R.; et al. Lack of systematic topographic difference between attention and reasoning beta correlates. PLoS ONE 2013, 1, e59595. [Google Scholar] [CrossRef] [PubMed]
- Markman, K.D.; Klein, W.M.P.; Suhr, J.A. Handbook of Imagination and Mental Simulation; Psychology Press: Hove, UK, 2012. [Google Scholar]
- Ganis, G. Visual mental imagery. In Multisensory Imagery; Springer: Beilin, Germany, 2013; pp. 9–28. [Google Scholar]
- Seydell-Greenwald, A.; Ferrara, K.; Chambers, C.E.; Newport, E.L.; Landau, B. Bilateral parietal activations for complex visual-spatial functions: Evidence from a visual-spatial construction task. Neuropsychologia 2017, 106, 194–206. [Google Scholar] [CrossRef]
- Nicolae, I.E.; Acqualagna, L.; Blankertz, B. Assessing the depth of cognitive processing as the basis for potential user-state adaptation. Front. Neurosci. 2017, 11, 548. [Google Scholar] [CrossRef] [Green Version]
- Van de Meerendonk, N.; Chwilla, D.J.; Kolk, H.H. States of indecision in the brain: ERP reflections of syntactic agreement violations versus visual degradation. Neuropsychologia 2013, 51, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Petersen, G.K.; Saunders, B.; Inzlicht, M. The conflict negativity: Neural correlate of value conflict and indecision during financial decision making. bioRxiv 2017, bioRxiv 174136. [Google Scholar]
- Versaci, M.; Morabito, F.C. Image edge detection: A new approach based on fuzzy entropy and fuzzy divergence. Int. J. Fuzzy Syst. 2021, 1–19. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 2020, 121, 103805. [Google Scholar] [CrossRef] [PubMed]
- Morabito, F.C.; Morabito, G.; Cacciola, M.; Occhiuto, G. The Brain and Creativity. In Springer Handbook of Bio-/Neuroinformatics; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1099–1109. [Google Scholar]
- Keller, J.M.; Chen, S.; Crownover, R.M. Texture description and segmentation through fractal geometry. Comput. Vision Graph. Image Process. 1989, 45, 150–166. [Google Scholar] [CrossRef]
- Ivanovici, M.; Richard, N. A Naive Complexity Measure for Color Texture Images. In Proceedings of the 2017 International Symposium on Signals, Circuits and Systems (ISSCS), lasi, Romania, 13–14 July 2017; pp. 1–4. [Google Scholar]
- Morabito, F.C.; Cacciola, M.; Occhiuto, G. Creative Brain and Abstract Art: A Quantitative Study on Kandinskij paintings. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2387–2394. [Google Scholar]
- Guariglia, E. Primality, fractality, and image analysis. Entropy 2019, 21, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, Y.; Ouyang, G.; Sommer, W.; Weiss, S.; Zhou, C.; Hildebrandt, A. What does temporal brain signal complexity reveal about verbal creativity? Front. Behav. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- De Melo, R.H.C. Using Fractal Characteristics such as Fractal Dimension, Lacunarity and Succolarity to Characterize Texture Patterns on Images; Universidade Federal Fluminense: Niteroi, Brazil, 2007. [Google Scholar]
- De Melo, R.H.C.; Conci, A. How succolarity could be used as another fractal measure in image analysis. Telecommun. Syst. 2013, 52, 1643–1655. [Google Scholar] [CrossRef]
- Cojocaru, J.I.R.; Popescu, D.; Nicolae, I.E. Texture Classification Based on Succolarity. In Proceedings of the 21st Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 26–28 November 2013; pp. 498–501. [Google Scholar]
Complexity Criteria | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | Total (%) |
---|---|---|---|---|---|---|---|---|---|
colors | x | x | x | x | x | x | x | x | 100% |
type of structure & forms: simple, geometrical, fragmentation, granularity, rugosity vs. smoothness, homogeneity, uniformity | x | x | x | x | x | x | x | 87.5% | |
distribution & positioning: crowdedness, sparsity, scattering, spreading | x | x | x | x | x | x | 75% | ||
details | x | x | x | x | x | x | 75% | ||
repeatability, resemblance, similarity vs variety | x | x | x | x | x | x | 75% | ||
clarity, sharpness, accentuation, focus, delimited forms vs blurry | x | x | x | x | x | x | 75% | ||
disorder, randomness, chaos, mixture, intercalation, twistedness vs. order, balance | x | x | x | x | x | x | 75% | ||
no. of elements, groups, regions | x | x | x | x | x | 62.5% | |||
impulse type: first impression, attraction, captivation, interest | x | x | x | x | 50% | ||||
contrast, luminosity, intensity, darkness vs. shadows, light | x | x | x | 37.5% | |||||
size: big vs. small, expansion, vastity (beyond the image capture) | x | x | x | 37.5% | |||||
recognition, understandability, difficulty in recognition and reasoning | x | x | 25% | ||||||
mood induced: pleasant, relaxing vs. tiring, monotonous | x | x | x | 37.5% | |||||
sensations: 3D | x | x | 25% | ||||||
static vs. dynamic | x | 12.5% | |||||||
zoom-in/out | x | 12.5% | |||||||
tactile | x | 12.5% | |||||||
content type: familiar, common/ordinary | x | 12.5% | |||||||
human specific capabilities: emotions, memories, imagination | x | 12.5% | |||||||
hardness in construction | x | 12.5% |
Nat | |||
Complexity level | 1: low | 2: medium | 3: high |
CE | 7.33–10.34 | 10.34–13.35 | 13.35–16.37 |
CFD | 1.89–2.59 | 2.59–3.28 | 3.28–3.98 |
Frac | |||
Complexity level | 1: low | 2: medium | 3: high |
CE | 16.45–16.9 | 16.9–17.37 | 17.37–17.84 |
CFD | 2.03–2.73 | 2.73–3.42 | 3.42–4.12 |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | GA | |
---|---|---|---|---|---|---|---|---|---|
CE–N3 | −0.25 (P3) | 0.34 (P3) | |||||||
0.29 (P4) | |||||||||
CE–P3 | −0.21 (P3) | 0.21 (P3) | |||||||
−0.26 (P4) | |||||||||
CE–P3b | −0.25 (P3) | 0.25 (P3) | |||||||
−0.27 (P4) | 0.24 (P4) | ||||||||
CFD–N3 | 0.34 (P3) | 0.23 (P4) | |||||||
0.26 (P4) | |||||||||
CFD–P3 | 0.21 (P3) | ||||||||
CFD–P3b | 0.27 (P3) | 0.2 (P3) | 0.2 (P3) | ||||||
0.22 (P4) | 0.26 (P4) | ||||||||
sbj-N3 | −0.26 (P3) | ||||||||
sbj-P3 | −0.22 (P3) | 0.23 (P4) | |||||||
sbj-P3b | −0.24 (P3) | −0.21 (P3) | 0.22 (P4) | ||||||
CE– | −0.23 (P3) | ||||||||
CE– | −0.24 (P3) | ||||||||
CFD– | −0.24 (P3) | −0.23 (T4) | −0.21 (T4) | ||||||
CFD– | 0.21 (T4) | −0.25 (T4) | −0.2 (P4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolae, I.E.; Ivanovici, M. Color Texture Image Complexity—EEG-Sensed Human Brain Perception vs. Computed Measures. Appl. Sci. 2021, 11, 4306. https://doi.org/10.3390/app11094306
Nicolae IE, Ivanovici M. Color Texture Image Complexity—EEG-Sensed Human Brain Perception vs. Computed Measures. Applied Sciences. 2021; 11(9):4306. https://doi.org/10.3390/app11094306
Chicago/Turabian StyleNicolae, Irina E., and Mihai Ivanovici. 2021. "Color Texture Image Complexity—EEG-Sensed Human Brain Perception vs. Computed Measures" Applied Sciences 11, no. 9: 4306. https://doi.org/10.3390/app11094306
APA StyleNicolae, I. E., & Ivanovici, M. (2021). Color Texture Image Complexity—EEG-Sensed Human Brain Perception vs. Computed Measures. Applied Sciences, 11(9), 4306. https://doi.org/10.3390/app11094306