Azima tetracantha Leaf Methanol Extract Inhibits Gastric Cancer Cell Proliferation through Induction of Redox Imbalance and Cytochrome C Release
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Laboratory Reagents, Chemicals, and Other Supplies
2.2. Extraction of Azima Tetracantha and Phytochemical Analysis
2.3. Efficacy of A. tetracantha Leaf Methanol Extract on the Neoplastic Cell Lines
2.4. RTqPCR Analysis
2.5. Estimation of Reactive Oxygen Species by DCFH and Cytochrome-C Release
2.6. Statistical Analysis
3. Results
3.1. Quantitative and LCMS-Based Screening of Phytoconstituents
3.2. Anti-Proliferative Activity of A. tetracantha Methanol Extract and Changes in the Cellular Redox Status
3.3. RTqPCR, Cytochrome C Release, Reactive Oxygen Species Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selvanathan, A.; Nixon, C.Y.; Zhu, Y.; Scietti, L.; Forneris, F.; Uribe, L.M.M.; Lidral, A.C.; Jezewski, P.A.; Mulliken, J.B.; Murray, J.C.; et al. CDH1 Mutation Distribution and Type Suggests Genetic Differences between the Etiology of Orofacial Clefting and Gastric Cancer. Genes 2020, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Díaz, P.; Valenzuela Valderrama, M.; Bravo, J.; Quest, A.F.G. Helicobacter pylori and Gastric Cancer: Adaptive Cellular Mechanisms Involved in Disease Progression. Front. Microbiol. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.-M.; Luo, F.-F.; Zou, L.-X.; He, R.-Q.; Pan, D.-H.; Chen, X.; Xie, T.-T.; Li, Y.-Q.; Peng, Z.-G.; Chen, G. Human papillomavirus as a potential risk factor for gastric cancer: A meta-analysis of 1,917 cases. OncoTargets Ther. 2016, 9, 7105–7114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, N.; Davis, S.; Narayanankutty, A.; Nazeem, P.; Babu, T.D.; Abida, P.; Valsala, P.; Raghavamenon, A.C. Garlic Phytocompounds Possess Anticancer Activity by Specifically Targeting Breast Cancer Biomarkers-an in Silico Study. Asian Pac. J. Cancer Prev. 2016, 17, 2883–2888. [Google Scholar]
- Han, J.; Jiang, Y.; Liu, X.; Meng, Q.; Xi, Q.; Zhuang, Q.; Han, Y.; Gao, Y.; Ding, Q.; Wu, G. Dietary Fat Intake and Risk of Gastric Cancer: A Meta-Analysis of Observational Studies. PLoS ONE 2015, 10, e0138580. [Google Scholar] [CrossRef] [Green Version]
- Sieri, S.; Agnoli, C.; Pala, V.; Grioni, S.; Brighenti, F.; Pellegrini, N.; Masala, G.; Palli, D.; Mattiello, A.; Panico, S.; et al. Dietary glycemic index, glycemic load, and cancer risk: Results from the EPIC-Italy study. Sci. Rep. 2017, 7, 9757. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Oh, A.; Truong, H.; Laszkowska, M.; Camargo, M.C.; Abrams, J.; Hur, C. Low sodium diet for gastric cancer prevention in the United States: Results of a Markov model. Cancer Med. 2021, 10, 684–692. [Google Scholar] [CrossRef]
- Ishimoto, T.; Miyake, K.; Nandi, T.; Yashiro, M.; Onishi, N.; Huang, K.K.; Lin, S.J.; Kalpana, R.; Tay, S.T.; Suzuki, Y.; et al. Activation of Transforming Growth Factor Beta 1 Signaling in Gastric Cancer-associated Fibroblasts Increases Their Motility, via Expression of Rhomboid 5 Homolog 2, and Ability to Induce Invasiveness of Gastric Cancer Cells. Gastroenterology 2017, 153, 191–204. [Google Scholar] [CrossRef]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 58. [Google Scholar] [CrossRef]
- Adashek, J.J.; Arroyo-Martinez, Y.; Menta, A.K.; Kurzrock, R.; Kato, S. Therapeutic Implications of Epidermal Growth Factor Receptor (EGFR) in the Treatment of Metastatic Gastric/GEJ Cancer. Front. Oncol. 2020, 10, 1312. [Google Scholar] [CrossRef]
- Blank, S.; Deck, C.; Dreikhausen, L.; Weichert, W.; Giese, N.; Falk, C.; Schmidt, T.; Ott, K. Angiogenic and growth factors in gastric cancer. J. Surg. Res. 2015, 194, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef]
- Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Duraipandiyan, V.; Ignacimuthu, S.; Al-Dhabi, N.A. Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food Chem. 2013, 139, 860–865. [Google Scholar] [CrossRef]
- Antonisamy, P.; Duraipandiyan, V.; Ignacimuthu, S. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J. Pharm. Pharmacol. 2011, 63, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, P.; Duraipandiyan, V.; Aravinthan, A.; Al-Dhabi, N.A.; Ignacimuthu, S.; Choi, K.C.; Kim, J.H. Protective effects of friedelin isolated from Azima tetracantha Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms. Eur. J. Pharmacol. 2015, 750, 167–175. [Google Scholar] [CrossRef]
- Ortiz-Cruz, R.A.; Ramírez-Wong, B.; Ledesma-Osuna, A.I.; Torres-Chávez, P.I.; Sánchez-Machado, D.I.; Montaño-Leyva, B.; López-Cervantes, J.; Gutiérrez-Dorado, R. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods Hum. Nutr. 2020, 75, 252–257. [Google Scholar] [CrossRef]
- Wang, B.; Liu, L.; Huang, Q.; Luo, Y. Quantitative Assessment of Phenolic Acids, Flavonoids and Antioxidant Activities of Sixteen Jujube Cultivars from China. Plant Foods Hum. Nutr. 2020, 75, 154–160. [Google Scholar] [CrossRef]
- House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. S. Afr. J. Bot. 2020, 135, 408–412. [Google Scholar] [CrossRef]
- Ali, A.; Ali, A.; Husain Warsi, M.; Ahmad, W.; Tahir, A. Chemical characterization, antidiabetic and anticancer activities of Santolina chamaecyparissus. Saudi J. Biol. Sci. 2021, 28, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Job, J.T.; Rajagopal, R.; Alfarhan, A.; Narayanankutty, A. Borassus flabellifer Linn haustorium methanol extract mitigates fluoride-induced apoptosis by enhancing Nrf2/Haeme oxygenase 1–dependent glutathione metabolism in intestinal epithelial cells. Drug Chem. Toxicol. 2021. accepted. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.N.; Mellon, F.A.; Rosa, E.A.S.; Perkins, L.; Kroon, P.A. Profiling Glucosinolates, Flavonoids, Alkaloids, and Other Secondary Metabolites in Tissues of Azima tetracantha L. (Salvadoraceae). J. Agric. Food Chem. 2004, 52, 5856–5862. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, M.; Torii, S.; Matsuzawa, S.; Xie, Z.; Kitada, S.; Krajewski, S.; Yoshida, H.; Mak, T.W.; Reed, J.C. Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med. 2000, 191, 1709–1720. [Google Scholar] [CrossRef] [Green Version]
- Janssen, K.; Pohlmann, S.; Jänicke, R.U.; Schulze-Osthoff, K.; Fischer, U. Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment. Blood 2007, 110, 3662–3672. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Du, F.; Fang, M.; Wang, X. Formation of apoptosome is initiated by cytochrome induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc. Natl. Acad. Sci. USA 2005, 102, 17545–17550. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, U.; Szewczyk, K.; Owczarek, K.; Hrabec, Z.; Podsędek, A.; Koziołkiewicz, M.; Hrabec, E. Flavanols from Japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in Bax/Bcl-2 mRNA ratio. Nutr. Cancer 2013, 65, 273–285. [Google Scholar] [CrossRef]
- Joseph, S.V.; Edirisinghe, I.; Burton-Freeman, B.M. Fruit Polyphenols: A Review of Anti-inflammatory Effects in Humans. Crit. Rev. Food Sci. Nutr. 2016, 56, 419–444. [Google Scholar] [CrossRef]
- Malayil, D.; Jose, B.; Narayanankutty, A.; Ramesh, V.; Rajagopal, R.; Alfarhan, A. Phytochemical profiling of Azima tetracantha Lam. leaf methanol extract and elucidation of its potential as a chain-breaking antioxidant, anti-inflammatory and anti-proliferative agent. Saudi J. Biol. Sci. 2021, 28, 6040–6044. [Google Scholar] [CrossRef]
Gene | Direction | Sequence |
---|---|---|
CASPASE-3 | Forward | 5′-GCTGGATGCCGTCTAGAGTC-3′ |
Reverse | 5′-ATGTGTGGATGATGCTGCCA-3′ | |
CASPASE-7 | Forward | 5′-GGGCCCATCAATGACACAGA-3′ |
Reverse | 5′-GTCTTTTCCGTGCTCCTCCA-3′ | |
APAF-1 | Forward | 5′-TCTTCCAGTGGTAAAGATTCAGTT-3′ |
Reverse | 5′-TTGCGAAGCATCAGAATGCG-3′ | |
BAX | Forward | 5′-GAGCTAGGGTCAGAGGGTCA-3′ |
Reverse | 5′-CCCCGATTCATCTACCCTGC-3′ | |
BCL2 | Forward | 5′-ACCTACCCAGCCTCCGTTAT-3′ |
Reverse | 5′-GAACTGGGGGAGGATTGTGG-3′ | |
β-ACTIN | Forward | 5′-ACTACCTCATGAAGATCCTC-3′ |
Reverse | 5′-TAGAAGCATTTGCGGTGGACGATGG-3′ |
Parameters | Petroleum Ether | Chloroform Extract | Acetone Extract | Methanol Extract |
---|---|---|---|---|
Total phenols (TPC) | 72.35 ± 4.3 | 92.22 ± 4.1 a | 175.34 ± 8.8 a,b | 277.35 ± 10.4 a,b,c |
Total flavonoids (TF) | 11.05 ± 1.5 | 13.19 ± 2.6 a | 29.67 ± 3.4 a,b | 48.06 ± 3.85 a,b,c |
Cell | Dosage | Catalase (U/mg Protein) | Reduced Glutathione (µmoles/mg Protein) | Thiobarbic Acid Reactive Substances (nmoles/mg Protein) | Conjugated Dienes (nmoles/mg Protein) |
---|---|---|---|---|---|
Kato-III | Untreated | 21.6 ± 1.03 | 3.77 ± 0.19 | 1.35 ± 0.11 | 22.5 ± 2.4 |
25 µg/mL | 34.2 ± 1.19 * | 3.08 ± 0.22 * | 3.21 ± 0.41 * | 66.3 ± 2.7 * | |
50 µg/mL | 51.7 ± 2.04 ** | 2.62 ± 0.18 *** | 4.64 ± 0.34 ** | 82.8 ± 3.1 *** | |
AGS | Untreated | 44.1 ± 2.82 | 2.51 ± 0.26 | 2.46 ± 0.20 | 36.1 ± 2.9 |
30 µg/mL | 68.3 ± 3.55 * | 2.11 ± 0.19 * | 3.65 ± 0.16 * | 55.7 ± 2.6 * | |
60 µg/mL | 94.5 ± 3.9 *** | 1.69 ± 0.33 ** | 4.51 ± 0.12 ** | 79.3 ± 4.5 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.O.; Narayanankutty, A.; Kuttithodi, A.M.; Kim, H.-J.; Na, S.W.; Kunnath, K.; Rajagopal, R.; Alfarhan, A. Azima tetracantha Leaf Methanol Extract Inhibits Gastric Cancer Cell Proliferation through Induction of Redox Imbalance and Cytochrome C Release. Appl. Sci. 2022, 12, 120. https://doi.org/10.3390/app12010120
Kim YO, Narayanankutty A, Kuttithodi AM, Kim H-J, Na SW, Kunnath K, Rajagopal R, Alfarhan A. Azima tetracantha Leaf Methanol Extract Inhibits Gastric Cancer Cell Proliferation through Induction of Redox Imbalance and Cytochrome C Release. Applied Sciences. 2022; 12(1):120. https://doi.org/10.3390/app12010120
Chicago/Turabian StyleKim, Young Ock, Arunaksharan Narayanankutty, Aswathi Moothakoottil Kuttithodi, Hak-Jae Kim, Sae Won Na, Krishnaprasad Kunnath, Rajakrishnan Rajagopal, and Ahmed Alfarhan. 2022. "Azima tetracantha Leaf Methanol Extract Inhibits Gastric Cancer Cell Proliferation through Induction of Redox Imbalance and Cytochrome C Release" Applied Sciences 12, no. 1: 120. https://doi.org/10.3390/app12010120
APA StyleKim, Y. O., Narayanankutty, A., Kuttithodi, A. M., Kim, H. -J., Na, S. W., Kunnath, K., Rajagopal, R., & Alfarhan, A. (2022). Azima tetracantha Leaf Methanol Extract Inhibits Gastric Cancer Cell Proliferation through Induction of Redox Imbalance and Cytochrome C Release. Applied Sciences, 12(1), 120. https://doi.org/10.3390/app12010120