Line Segment Matching Fusing Local Gradient Order and Non-Local Structure Information
Abstract
:1. Introduction
- (1)
- We use the line support region intensity histogram to perform adaptive intensity partitioning. The sub-regions are determined by intensity order, which increases the distance between descriptors of different line segments and will not affect the real-time performance;
- (2)
- We use the local gradient order to describe the line segment. The local gradient order changes very little when the illumination changes and rotates. This means that the local gradient order of the same line segment has a high similarity in the images of different scenes;
- (3)
- We fuse local gradient order information and non-local structural information of the line segment. Non-local structural information is not easily affected by image transformation. In addition, the sampling center information neglected in the local sampling process is supplemented. We fuse that information in an attempt to improve the matching performance in various scenes.
2. Approach Overview
3. Methodologies
3.1. Line Support Region
3.2. Adaptive Intensity Partition
- (1)
- Using sequential partitioning requires a lot of sorting operations;
- (2)
- When the intensity value is excessively concentrated in a specific value, it will lead to uneven partition and significant partition change when the illumination changes.
3.3. Local Gradient Order Encoding
3.4. Non-Local Structural Information Encoding
3.5. Normalized Histogram
3.6. Generating Candidate Line Pairs and Obtain Final Result
4. Experiment
4.1. Experimental Datasets
4.2. Evaluation of Parameters
4.3. Comparative Experiments
4.4. Real-Time Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, K.; Goyal, A. Classification based survey of image registration methods. In Proceedings of the International Conference on Computing, Communications and Networking Technologies, Tiruchengode, India, 4–6 July 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270–2287. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ojeda, R.; Moreno, F.; Zuñiga-Noël, D.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A Stereo SLAM System Through the Combination of Points and Line Segments. IEEE Trans. Robot. 2019, 35, 734–746. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Tang, F.; Xu, Z.; Zhang, C.; Wu, Y. A Point-Line VIO System With Novel Feature Hybrids and With Novel Line Predicting-Matching. IEEE Robot. Autom. Lett. 2021, 6, 8681–8688. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.; Xiang, W.; Tan, Q.; Yuan, K.; Zhang, Z.; Hu, Y. A SLAM System Based on RGBD Image and Point-Line Feature. IEEE Access 2021, 9, 9012–9025. [Google Scholar] [CrossRef]
- Schmid, C.; Zisserman, A. Automatic line matching across views. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 666–671. [Google Scholar] [CrossRef] [Green Version]
- Bay, H.; Ferraris, V. Wide-baseline stereo maching with line segments. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 329–336. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, F.; Hu, Z. MSLD: A robust descriptor for line matching. Pattern Recogn. 2009, 42, 941–953. [Google Scholar] [CrossRef]
- Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805. [Google Scholar] [CrossRef]
- Huang, L.; Chang, Q. Line segment matching of space target image sequence based on optical flow prediction. In Proceedings of the IEEE International Conference on Progress in Informatics and Computing PIC, Nanjing, China, 18–20 December 2015. [Google Scholar] [CrossRef]
- Xing, J.; Wei, Z. A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling. Sensors 2020, 20, 1639. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Wei, Z.; Zhang, G. A robust line matching method based on local appearance descriptor and neighboring geometric attributes. In Proceedings of the SPIE Society of Photo-Optical Instrumentation Engineers, Beijing, China, 9–11 May 2016; Volume 10157. [Google Scholar] [CrossRef]
- Gomez-Ojeda, R.; Gonzalez-Jimenez, J. Geometric-based Line Segment Tracking for HDR Stereo Sequences. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 69–74. [Google Scholar] [CrossRef] [Green Version]
- Fan, B.; Wu, F.; Hu, Z. Line matching leveraged by point correspondences. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 390–397. [Google Scholar] [CrossRef]
- Fan, B.; Wu, F.; Hu, Z. Robust line matching through line–point invariants. Pattern Recogn. 2011, 45, 794–805. [Google Scholar] [CrossRef]
- Jia, Q.; Gao, X.; Fan, X. Novel Coplanar Line-Points Invariants for Robust Line Matching Across Views. Lect. Notes Comput. Sci. 2016, 9911, 599–611. [Google Scholar] [CrossRef]
- Li, K.; Yao, J.; Lu, X. Robust Line Matching Based on Ray-Point-Ray Structure Descriptor. Lect. Notes Comput. Sci. 2015, 9008, 554–569. [Google Scholar] [CrossRef]
- López, J.; Santos, R. Two-view line matching algorithm based on context and appearance in low-textured images. Pattern Recognit. 2015, 48, 2164–2184. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S. A novel line matching method based on intersection context. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 1014–1021. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S. Simultaneous line matching and epipolar geometry estimation based on the intersection context of coplanar line pairs. Pattern Recogn. Lett. 2012, 33, 1349–1363. [Google Scholar] [CrossRef]
- Li, K.; Yao, J.; Lu, X. Hierarchical line matching based on Line–Junction–Line structure descriptor and local homography estimation. Neurocomputing 2016, 184, 207–220. [Google Scholar] [CrossRef]
- Chen, M.; Yan, S.; Qin, R. Hierarchical line segment matching for wide-baseline images via exploiting viewpoint robust local structure and geometric constraints. ISPRS J. Photogramm. Remote Sens. 2021, 181, 48–66. [Google Scholar] [CrossRef]
- Akinlar, C.; Topal, C. EDLines: A real-time line segment detector with a false detection control. Pattern Recogn. Lett. 2011, 32, 1633–1642. [Google Scholar] [CrossRef]
- Wang, L.; Chen, B. Geometry consistency aware confidence evaluation for feature matching. Image Vision Comput. 2020, 103, 103984. [Google Scholar] [CrossRef]
- Leordeanu, M.; Hebert, M. A spectral technique for correspondence problems using pairwise constraints. In Proceedings of the IEEE International Conference on Computer Vision, Beijing, China, 17–20 October 2005; Volume II, pp. 1482–1489. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fan, B.; Wu, F. Local Intensity Order Pattern for feature description. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 603–610. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Xin, L.; Gao, C.; Zhang, G.; Zhang, T. Grayscale-Inversion and Rotation Invariant Texture Description Using Sorted Local Gradient Pattern. IEEE Signal Proc. Lett. 2018, 25, 625–629. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, B.; Wang, G.; Wu, F. Exploring Local and Overall Ordinal Information for Robust Feature Description. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2198–2211. [Google Scholar] [CrossRef]
- Song, T.; Feng, J.; Luo, L. Robust Texture Description Using Local Grouped Order Pattern and Non-Local Binary Pattern. IEEE Trans. Circ. Syst. Vid. 2021, 31, 189–202. [Google Scholar] [CrossRef]
- Mehta, R.; Egiazarian, K. Dominant Rotated Local Binary Patterns (DRLBP) for texture classification. Pattern Recogn. Lett. 2016, 71, 16–22. [Google Scholar] [CrossRef]
- Fathi, A.; Naghsh-Nilchi, A.R. Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recogn. Lett. 2012, 33, 1093–1100. [Google Scholar] [CrossRef]
- Liu, L.; Fieguth, P.; Pietikainen, M.; Lao, S. Median robust extended local binary pattern for texture classification. IEEE Trans. Image Process. 2016, 25, 1368–1381. [Google Scholar] [CrossRef] [PubMed]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Wei, D.; Zhang, Y.; Li, C. Robust line segment matching via reweighted random walks on the homography graph. Pattern Recogn. 2020, 111, 107693. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Q.; Liu, S.; Wang, W. Robust line feature matching based on pair-wise geometric constraints and matching redundancy. ISPRS J. Photogramm. Remote Sens. 2020, 172, 41–58. [Google Scholar] [CrossRef]
- Li, K.; Yao, J.; Lu, M. Line segment matching: A benchmark. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Placid, NY, USA, 7–10 March 2016; Available online: http://kailigo.github.io/projects/LineMatchingBenchmark (accessed on 30 May 2021).
Arrangement | Index |
---|---|
1, 2, 3 | 0 |
1, 3, 2 | 1 |
2, 1, 3 | 2 |
2, 3, 1 | 3 |
3, 1, 2 | 4 |
3, 2, 1 | 5 |
Parameter | Description | Value |
---|---|---|
h | the length of LSR | 45 |
B | the number of sub-regions | 4 |
R | the sampling radius | 5 |
M | the number of groups | 3 |
V | the number of anchor points | 4 |
Image Pair | Our Method | MSLD | LPI | LJL |
---|---|---|---|---|
a | 22.6 | NULL | 41.2 | 280.7 |
b | 2.4 | 2.4 | 35.3 | 217.7 |
c | 3.0 | 2.5 | 6.7 | 78.3 |
d | 1.7 | 2.2 | 6.6 | 128.4 |
e | 4.4 | 2.8 | 7.1 | 179.5 |
f | 2.2 | 2.3 | 9.5 | 170.6 |
g | 4.2 | 1.2 | 9.3 | 52.1 |
h | 2.9 | 2.5 | 4.9 | 200.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Cheng, J.; Deng, J.; Zhou, Y.; Xiao, H.; Zhang, J.; Luo, K. Line Segment Matching Fusing Local Gradient Order and Non-Local Structure Information. Appl. Sci. 2022, 12, 127. https://doi.org/10.3390/app12010127
Cai W, Cheng J, Deng J, Zhou Y, Xiao H, Zhang J, Luo K. Line Segment Matching Fusing Local Gradient Order and Non-Local Structure Information. Applied Sciences. 2022; 12(1):127. https://doi.org/10.3390/app12010127
Chicago/Turabian StyleCai, Weibo, Jintao Cheng, Juncan Deng, Yubin Zhou, Hua Xiao, Jian Zhang, and Kaiqing Luo. 2022. "Line Segment Matching Fusing Local Gradient Order and Non-Local Structure Information" Applied Sciences 12, no. 1: 127. https://doi.org/10.3390/app12010127
APA StyleCai, W., Cheng, J., Deng, J., Zhou, Y., Xiao, H., Zhang, J., & Luo, K. (2022). Line Segment Matching Fusing Local Gradient Order and Non-Local Structure Information. Applied Sciences, 12(1), 127. https://doi.org/10.3390/app12010127