Modified 16-Quasi Log Periodic Antenna Array for Microwave Imaging of Breast Cancer Detection
Abstract
:1. Introduction
2. Antenna Design
3. Parametric Study
3.1. Effect of the Length w1
3.2. Effect of the Length w6
4. Analysis and Discussion
5. Microwave Imaging Setup
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeSantis, C.E.; Fedewa, S.A.; Sauer, A.G.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA A Cancer J. Clin. 2016, 66, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, M.Z.; Islam, M.T.; Misran, N.; Kibria, S.; Samsuzzaman, M. Microwave imaging for breast tumor detection using uniplanar AMC based CPW-fed microstrip antenna. IEEE Access 2018, 6, 44763–44775. [Google Scholar] [CrossRef]
- Porter, E.; Kirshin, E.; Santorelli, A.; Coates, M.; Popovic, M. Time-domain multistatic radar system for microwave breast screening. IEEE Antennas Wirel. Propag. Lett. 2013, 20, 229–232. [Google Scholar] [CrossRef]
- Foroutan, F.; Nikolova, N.K. Active sensor for microwave tissue imaging with bias-switched arrays. Sensors 2018, 18, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, B.J.; Abbosh, A.M.; Mustafa, S.; Ireland, D. Microwave system for head imaging. IEEE Trans. Instrum. Meas. 2013, 63, 117–123. [Google Scholar] [CrossRef]
- Fear, E.C.; Stuchly, M.A. Microwave breast tumor detection: Antenna design and characterization. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Transmitting Waves of Progress to the Next Millennium, 2000 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Salt Lake City, UT, USA, 16 July 2000; pp. 1076–1079. [Google Scholar] [CrossRef]
- Porter, E.; Bahrami, H.; Santorelli, A.; Gosselin, B.; Rusch, L.A.; Popovic, M. A wearable microwave antenna array for time-domain breast tumor screening. IEEE Trans. Med. Imaging 2016, 35, 1501–1509. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, R.; George, J.V.; Kanagasabai, M.; Shrivastav, A.K. A compact antipodal Vivaldi antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1557–1560. [Google Scholar] [CrossRef]
- Abbak, M.; Akıncı, M.N.; Cayoren, M.; Akduman, I. Experimental microwave imaging with a novel corrugated Vivaldi antenna. IEEE Trans. Antennas Propag. 2017, 65, 3302–3307. [Google Scholar] [CrossRef]
- Islam, M.T.; Samsuzzaman, M.; Islam, M.; Kibria, S.; Singh, M.J. A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor. Sensors 2018, 18, 2962. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, P.M.; Gonzalez, G.S.; Hernandez, L.M.; Rubio, A.B.; Gomez, M.R. Design of an ultra-broadband V antenna for microwave detection of breast tumors. Microw. Opt. Technol. Lett. 2002, 34, 164–166. [Google Scholar] [CrossRef]
- Inum, R.; Rana, M.; Shushama, K.N.; Quader, M. EBG based microstrip patch antenna for brain tumor detection via scattering parameters in microwave imaging system. Int. J. Biomed. Imaging 2018. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhai, H.; Li, L.; Liang, C.; Han, Y. Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1584–1587. [Google Scholar] [CrossRef]
- Hagness, S.C.; Taflove, A.; Bridges, J.E. Wideband ultralow reverberation antenna for biological sensing. Electron. Lett. 1997, 33, 594–1595. [Google Scholar] [CrossRef]
- Shao, W.; Edalati, A.; McCollough, T.R.; McCollough, W.J. A time-domain measurement system for UWB microwave imaging. IEEE Trans. Microw. Theory Tech. 2018, 66, 2265–2275. [Google Scholar] [CrossRef]
- Zhai, G.; Cheng, Y.; Yin, Q.; Zhu, S.; Gao, J. Simplified printed log-periodic dipole array antenna fed by CBCPW. Int. J. Antennas Propag. 2013. [Google Scholar] [CrossRef]
- Meaney, P.M.; Fanning, M.W.; Li, D.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [Google Scholar]
- Fear, E.C.; Bourqui, J.; Curtis, C.; Mew, D.; Docktor, B.; Romano, C. Microwave breast imaging with a monostatic radar-based system: A study of application to patients. IEEE Trans. Microw. Theory Tech. 2013, 61, 2119–2128. [Google Scholar] [CrossRef]
- Porter, E.; Santorelli, A.; Popovic, M. Time-domain microwave radar applied to breast imaging: Measurement reliability in a clinical setting. Prog. Electromagn. Res. 2014, 149, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Amineh, R.K.; Ravan, M.; Trehan, A.; Nikolova, N.K. Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Trans. Antennas Propag. 2010, 59, 928–940. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Abbosh, A.M.; Sharpe, P. Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system. Int. J. RF Microw. Comput. -Aided Eng. 2013, 23, 59–66. [Google Scholar] [CrossRef]
- Zeng, X.; Fhager, A.; He, Z.; Persson, M.; Linner, P.; Zirath, H. Development of a time domain microwave system for medical diagnostics. IEEE Trans. Instrum. Meas. 2014, 63, 2931–2939. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, S.J. Instantaneous microwave imaging with time-domain measurements for breast cancer detection. Electron. Lett. 2013, 49, 639–641. [Google Scholar] [CrossRef]
- Song, H.; Sasada, S.; Kadoya, T.; Okada, M.; Arihiro, K.; Xiao, X.; Kikkawa, T. Detectability of breast tumor by a hand-held impulse-radar detector: Performance evaluation and pilot clinical study. Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Samsuzzaman, M.; Islam, M.T.; Islam, M.T.; Shovon, A.A.; Faruque, R.I.; Misran, N. A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications. Microw. Opt. Technol. Lett. 2019, 61, 2110–2118. [Google Scholar] [CrossRef]
- Rahman, A.; Islam, M.T.; Singh, M.J.; Kibria, S.; Akhtaruzzaman, M. Electromagnetic performances analysis of an ultrawideband and flexible material antenna in microwave breast imaging: To implement a wearable medical bra. Sci. Rep. 2016, 6, 38906. [Google Scholar] [CrossRef] [PubMed]
- Salvador, S.M.; Fear, E.C.; Okoniewski, M.; Matyas, J.R. Exploring joint tissues with microwave Imaging. IEEE Trans. Microw. Theory Tech. 2010, 58, 2307–2313. [Google Scholar] [CrossRef]
Reference | Antenna | Dimension (mm2) | Frequency (GHz) | Number of Elements | Arrangement | Imaging Method |
---|---|---|---|---|---|---|
[2] | CPW fed EBG Antenna | 76 × 44 | 3.1–7.6 | 2 | 2 element arrays | DMAS (Delay Multiply and Sum Algorithm) |
[12] | EBG antenna | 31.02 × 31.68 | 7.1–7.4 | 2 | 2 element arrays | Confocal imaging |
[21] | Slotted antenna | 40 × 22 | 3.1–10.6 | 12 | Planar array | - |
[24] | Planar slot UWB | 11 × 13.1 | 3.1–10.6 | 16 | 4 × 4 crossed shaped | Confocal imaging |
[25] | Vivaldi antenna | 40 × 40 | 2.5–11 | 16 | 8 vertically 8 horizontally | DAS |
[26] | UWB Flexible antenna | 20 × 14 | 4–6 | 2 | 2 element arrays | DMAS |
[27] | Balanced antipodal Vivaldi antenna | - | 1–13 | 1 | 36 positions | TSAR (Tissue Sensing Adaptive Radar) |
Proposed | Quasi Log Periodic | 50 × 40 | 2–5 | 16 | Circular array | DAS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, A.; Sobahi, N.; Sheikh, M.; Mittra, R.; Rmili, H. Modified 16-Quasi Log Periodic Antenna Array for Microwave Imaging of Breast Cancer Detection. Appl. Sci. 2022, 12, 147. https://doi.org/10.3390/app12010147
Syed A, Sobahi N, Sheikh M, Mittra R, Rmili H. Modified 16-Quasi Log Periodic Antenna Array for Microwave Imaging of Breast Cancer Detection. Applied Sciences. 2022; 12(1):147. https://doi.org/10.3390/app12010147
Chicago/Turabian StyleSyed, Avez, Nebras Sobahi, Muntasir Sheikh, Raj Mittra, and Hatem Rmili. 2022. "Modified 16-Quasi Log Periodic Antenna Array for Microwave Imaging of Breast Cancer Detection" Applied Sciences 12, no. 1: 147. https://doi.org/10.3390/app12010147
APA StyleSyed, A., Sobahi, N., Sheikh, M., Mittra, R., & Rmili, H. (2022). Modified 16-Quasi Log Periodic Antenna Array for Microwave Imaging of Breast Cancer Detection. Applied Sciences, 12(1), 147. https://doi.org/10.3390/app12010147