Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in a Double-Flexible Job Shop
Abstract
:1. Introduction
2. Green Scheduling Problem Model of Double Flexible Job Shop
2.1. Problem Description
2.2. Mathematical Model of the DFJSP
3. DFJSP Solution Based on the Multi-Objective Hybrid Salp Swarm Algorithm
3.1. Salp Swarm Algorithm
3.2. Multi-Objective Hybrid Salp Swarm Algorithm for Solving the DFJSP
3.2.1. Algorithm Framework
3.2.2. Encoding and Decoding Mechanisms
3.2.3. Individual Location Update Operations in OS Part
3.2.4. Cross Operations in MA and WA Parts
3.2.5. Mutation Operations in MA and WA Sections
4. Simulation Experiment and Analysis
4.1. Experimental Setup and Test Examples
4.2. Performance Evaluation Index
4.3. Parameter Setting
4.4. Test Results and Analysis
5. Conclusions
- (1)
- According to the characteristics of the DFJSP, a three-layer individual coding and decoding method of salp is designed, and it is decoded into an active scheduling scheme. In the optimization process of the algorithm, the individual position of the OS part of the individual salp is updated based on the Lévy random walk, and the random probability crossover operation and corresponding mutation operation are performed on the MA and WA parts, which effectively improves the optimization accuracy and efficiency of the algorithm.
- (2)
- In the part of numerical simulation experiment, the Taguchi method was used to study the influence of the parameter setting on scheduling results and the best factor-level combination of algorithm parameters was identified. Using a simulation test for the benchmark example of the DFJSP, the MHSSA was compared with the MSSA and the MOPSO to verify that the MHSSA can effectively solve the dual-flexible job shop green scheduling problem.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boudreau, J.; Hopp, W.; McClain, J.-O.; Thomas, L.J. On the interface between operations and human resources management. Manu. Serv. Opera. Manag. 2003, 5, 179–202. [Google Scholar] [CrossRef] [Green Version]
- Gino, F.; Pisano, G. Toward a theory of behavioral operations. Manu. Serv. Opera. Manag. 2008, 10, 676–691. [Google Scholar] [CrossRef] [Green Version]
- Neumann, W.-P.; Dul, J. Human factors: Spanning the gap between OM and HRM. Int. J. Opera. Prod. Manag. 2010, 30, 923–950. [Google Scholar] [CrossRef]
- Ye, C. Research on a new model of behavioral production scheduling based on learning effect. Enterp. Econ. 2015, 35, 5–10. [Google Scholar]
- Gong, G.; Deng, Q.; Gong, X.; Liu, W.; Ren, Q. A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators. J. Clean. Prod. 2018, 174, 560–576. [Google Scholar] [CrossRef]
- He, Y.; Liu, F.; Cao, H.-J.; Li, C.-B. A Bi-objective model for job-shop scheduling problem to minimize both energy consumption and makespan. J. Cent. South Univ. Tech. 2005, 12, 167–171. [Google Scholar] [CrossRef]
- Mouzon, G.; Mehmet, B.-Y.; Twomey, J. Operational methods for minimization of energy consumption of manufacturing equipment. Int. J. Prod. Res. 2007, 45, 4247–4271. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Tang, D.; Giret, A.; Salido, M.-A.; Li, W.-D. Energy-efficient scheduling for a flexible fow shop using an improved genetic-simulated annealing algorithm. Rob. Comput. Integr. Manuf. 2013, 29, 418–429. [Google Scholar] [CrossRef]
- Liu, C.-H.; Huang, D.-H. Reduction of power consumption and carbon footprints by applying multi-objective optimisation via genetic algorithms. Int. J. Prod. Res. 2014, 52, 337–352. [Google Scholar] [CrossRef]
- Mansouri, S.-A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine fowshop: Trade-off between makespan and energy consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [Google Scholar] [CrossRef] [Green Version]
- Subaï, C.; Baptiste, P.; Niel, E. Scheduling issues for environmentally responsible manufacturing: The case of hoist scheduling in an electroplating line. Int. J. Prod. Econ. 2006, 99, 74–87. [Google Scholar] [CrossRef]
- Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J.W. A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J. Manuf. Syst. 2011, 30, 234–240. [Google Scholar] [CrossRef]
- Diaz, N.; Redelsheimer, E.; Dornfeld, D. Energy consumption characterization and reduction strategies for milling machine tool use. In Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Braunschweig, Germany, 2–4 May 2011; pp. 263–267. [Google Scholar]
- Wang, S.; Lu, X.; Li, X.-X.; Li, W.-D. A systematic approach of process planning and scheduling optimization for sustainable machining. J. Clean. Prod. 2015, 87, 914–929. [Google Scholar] [CrossRef]
- Zhang, R.; Chiong, R. Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. J. Clean. Prod. 2016, 112, 3361–3375. [Google Scholar] [CrossRef]
- Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient scheduling in manufacturing companies: A review and research framework. Eur. J. Opera. Res. 2016, 248, 744–757. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wu, C. Advances in green shop scheduling and optimization. Control Deci. 2018, 33, 385–391. [Google Scholar]
- Lei, D.-M.; Zheng, Y.-L.; Guo, X.-P. A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. Int. J. Prod. Res. 2017, 55, 3126–3140. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y. Flexible job shop green scheduling problem with multi-speed machine. Comput. Integr. Manu. Sys. 2018, 24, 862–875. [Google Scholar]
- Dong, J.; Ye, C. Research on collaborative optimization of green manufacturing in semiconductor wafer distributed heterogeneous factory. Appl. Sci. 2019, 9, 2879–2903. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.-Y.; Ye, C.-M. IMSSA for TFT-LCD panel array process scheduling problem considering energy saving. China Mechan. Eng. 2019, 30, 2994–3003. [Google Scholar]
- Nanthapodej, R.; Liu, C.; Nitisiri, K.; Pattanapairoj, S. Variable neighborhood strategy adaptive search to solve parallel-machine scheduling to minimize energy consumption while considering job priority and control makespan. Appl. Sci. 2021, 11, 5311–5332. [Google Scholar] [CrossRef]
- He, Y.; Liu, F.; Cao, H.-J.; Li, C.-B. Scheduling optimization of mechanical processing system for green manufacturing model. Chin. J. Mechan. Eng. 2007, 43, 27–33. [Google Scholar] [CrossRef]
- Li, X.-X.; Huang, X.-M.; Liu, J.-X.; Liu, F. Optimization simulation for job-shop scheduling for reducing manufacturing energy consumption. J. Sys. Simu. 2016, 28, 114–120. [Google Scholar]
- Lu, C.; Gao, L.; Li, X.-Y.; Pan, Q.; Wang, Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J. Clean. Prod. 2017, 144, 228–238. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.-H.; Mirjalili, S.-Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Soft. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Coello, C.-A.; Pulido, G.-T.; Lechuga, M.-S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolut. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Liu, C.-P.; Ye, C.-M. Bat algorithm with the characteristics of lévy flight. CAAI Trans. Intell. Sys. 2013, 8, 240–246. [Google Scholar]
- Paolo, B. Routing and scheduling in a flexible job shop by tabu search. Ann. Opera. Res. 1993, 41, 157–183. [Google Scholar]
- Montgomery, D.-C. Design and Analysis of Experiments, 7th ed; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 50–60. [Google Scholar]
Factor | Factor Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
N | 50 | 100 | 150 | 200 |
CR | 0.2 | 0.5 | 0.7 | 0.9 |
MR | 0.1 | 0.2 | 0.3 | 0.4 |
Experimental Serial Number | Factor | RV | ||
---|---|---|---|---|
N | CR | MR | ||
1 | 1 | 1 | 1 | 0.0098 |
2 | 1 | 2 | 2 | 0.0098 |
3 | 1 | 3 | 3 | 0.0392 |
4 | 1 | 4 | 4 | 0.0196 |
5 | 2 | 1 | 2 | 0.0196 |
6 | 2 | 2 | 1 | 0.0392 |
7 | 2 | 3 | 4 | 0.0392 |
8 | 2 | 4 | 3 | 0.0784 |
9 | 3 | 1 | 3 | 0.0686 |
10 | 3 | 2 | 4 | 0.0686 |
11 | 3 | 3 | 1 | 0.0882 |
12 | 3 | 4 | 2 | 0.0490 |
13 | 4 | 1 | 4 | 0.0882 |
14 | 4 | 2 | 3 | 0.1471 |
15 | 4 | 3 | 2 | 0.1275 |
16 | 4 | 4 | 1 | 0.1078 |
Factor Level | N | CR | MR |
---|---|---|---|
1 | 0.0196 | 0.04655 | 0.06125 |
2 | 0.0441 | 0.066175 | 0.051475 |
3 | 0.0686 | 0.073525 | 0.083325 |
4 | 0.11765 | 0.0637 | 0.0539 |
Delta | 0.09805 | 0.026975 | 0.03185 |
Rank | 1 | 3 | 2 |
Table | Evaluation Index | MSSA | MOPSO | HMSSA | |||
---|---|---|---|---|---|---|---|
Avg | Std | Avg | Std | Avg | Std | ||
SP | 0.0562 | 0.0154 | 0.0488 | 0.0150 | 0.0691 | 0.0223 | |
IGD | 0.1912 | 0.0199 | 0.1882 | 0.0158 | 0.0940 | 0.0100 | |
Ω | 0.0025 | 0.0066 | 0.0025 | 0.0052 | 0.0449 | 0.0319 | |
SP | 0.0650 | 0.0179 | 0.0647 | 0.0239 | 0.0609 | 0.0164 | |
IGD | 0.1864 | 0.0168 | 0.1854 | 0.0237 | 0.1042 | 0.0155 | |
Ω | 0.0029 | 0.0063 | 0.0075 | 0.0101 | 0.0397 | 0.0355 | |
SP | 0.0677 | 0.0169 | 0.0761 | 0.0297 | 0.0692 | 0.0150 | |
IGD | 0.1971 | 0.0133 | 0.1947 | 0.0208 | 0.1178 | 0.0139 | |
Ω | 0.0038 | 0.0063 | 0.0091 | 0.0106 | 0.0371 | 0.0389 | |
SP | 0.0619 | 0.0189 | 0.0708 | 0.0259 | 0.0649 | 0.0148 | |
IGD | 0.1867 | 0.0204 | 0.1950 | 0.0146 | 0.1029 | 0.0121 | |
Ω | 0.0016 | 0.0039 | 0.0032 | 0.0061 | 0.0452 | 0.0303 | |
SP | 0.0638 | 0.0202 | 0.0676 | 0.0316 | 0.0599 | 0.0121 | |
IGD | 0.1398 | 0.0133 | 0.1382 | 0.0087 | 0.0755 | 0.0075 | |
Ω | 0.0058 | 0.0070 | 0.0065 | 0.0082 | 0.0377 | 0.0304 | |
SP | 0.0603 | 0.0121 | 0.0570 | 0.0138 | 0.0678 | 0.0151 | |
IGD | 0.1809 | 0.0208 | 0.1848 | 0.0184 | 0.1032 | 0.0072 | |
Ω | 0.0084 | 0.0126 | 0.0074 | 0.0084 | 0.0342 | 0.0285 | |
SP | 0.0626 | 0.0174 | 0.0672 | 0.0275 | 0.0690 | 0.0144 | |
IGD | 0.1800 | 0.0229 | 0.1809 | 0.0157 | 0.0951 | 0.0101 | |
Ω | 0.0052 | 0.0082 | 0.0057 | 0.0076 | 0.0391 | 0.0317 | |
SP | 0.0590 | 0.0195 | 0.0618 | 0.0173 | 0.0566 | 0.0078 | |
IGD | 0.1722 | 0.0151 | 0.1857 | 0.0161 | 0.0950 | 0.0104 | |
Ω | 0.0072 | 0.0104 | 0.0011 | 0.0026 | 0.0417 | 0.0375 | |
SP | 0.0604 | 0.0110 | 0.0690 | 0.0226 | 0.0574 | 0.0148 | |
IGD | 0.1777 | 0.0154 | 0.1801 | 0.0158 | 0.0975 | 0.0111 | |
Ω | 0.0038 | 0.0048 | 0.0053 | 0.0096 | 0.0409 | 0.0289 | |
Total | SP | 0.0619 | 0.0034 | 0.0648 | 0.0081 | 0.0639 | 0.0052 |
IGD | 0.1791 | 0.0165 | 0.1814 | 0.0170 | 0.0984 | 0.0113 | |
Ω | 0.0046 | 0.0023 | 0.0054 | 0.0026 | 0.0401 | 0.0036 |
Evaluation Index | MSSA | MOPSO | ||
---|---|---|---|---|
p Value | Sig (p < 0.05) | p Value | Sig (p < 0.05) | |
SP | 0.477 | N | 0.515 | N |
IGD | 0.008 | Y | 0.008 | Y |
Ω | 0.008 | Y | 0.008 | Y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Yao, Y.; Zhu, H. Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in a Double-Flexible Job Shop. Appl. Sci. 2022, 12, 205. https://doi.org/10.3390/app12010205
Liu C, Yao Y, Zhu H. Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in a Double-Flexible Job Shop. Applied Sciences. 2022; 12(1):205. https://doi.org/10.3390/app12010205
Chicago/Turabian StyleLiu, Changping, Yuanyuan Yao, and Hongbo Zhu. 2022. "Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in a Double-Flexible Job Shop" Applied Sciences 12, no. 1: 205. https://doi.org/10.3390/app12010205
APA StyleLiu, C., Yao, Y., & Zhu, H. (2022). Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in a Double-Flexible Job Shop. Applied Sciences, 12(1), 205. https://doi.org/10.3390/app12010205