Mobile Data-Mule Optimal Path Planning for Wireless Sensor Networks
Abstract
:1. Introduction
2. Problem Description
3. Optimization Problem Formulation
4. Mobile Element Scheduling Scheme
Algorithm 1 Initialization phase of Mobile Element Scheduling scheme |
|
Algorithm 2 Mobile Element Scheduling scheme |
|
Algorithm 3 Reset nodes’ expiration time and priority function |
|
Algorithm 4 Reset nodes’ profit function |
|
5. Simulation Studies
5.1. Data Mule for Low Complexity Sparse WSN ()
5.1.1. MoEls Case
5.1.2. MoEls Case
5.2. Data Mule for Medium Complexity WSN ()
5.3. Data Mule for Medium Complexity WSN ()—No Priorities Assigned
5.4. Discussion
6. Conclusions and Topics for Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
data mule | data Mobile Ubiquitous Local area network Extensions |
MoEl | Mobile Element |
MES | Mobile Element Scheduling |
MILP | Mixed Integer Linear Programming |
MTSP | Multiple Traveling Salesman Problem |
NP-hard | Non-deterministic Polynomial-time hard |
OP | Orienteering Problem |
OPTW | Orienteering Problem with Time Windows |
PISR | Persistent Intelligence, Surveillance, and Reconnaissance |
TSP | Traveling Salesman Problem |
TSSP | Travel Salesman Subset-Tour Problem |
UAV | Unmanned Aerial Vehicle |
VRP | Vehicle Routing Problem |
WSN | Wireless Sensor Network |
References
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Kandris, D.; Tsioumas, P.; Tzes, A.; Nikolakopoulos, G.; Vergados, D.D. Power conservation through energy efficient routing in wireless sensor networks. Sensors 2009, 9, 7320–7342. [Google Scholar] [CrossRef]
- Akkaya, K.; Younis, M. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw. 2005, 3, 325–349. [Google Scholar] [CrossRef] [Green Version]
- Bhadauria, D.; Isler, V. Data gathering tours for mobile robots. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 3868–3873. [Google Scholar]
- Bhadauria, D.; Tekdas, O.; Isler, V. Robotic data mules for collecting data over sparse sensor fields. J. Field Robot. 2011, 28, 388–404. [Google Scholar] [CrossRef] [Green Version]
- Somasundara, A.A.; Ramamoorthy, A.; Srivastava, M.B. Mobile element scheduling for efficient data collection in wireless sensor networks with dynamic deadlines. In Proceedings of the 25th IEEE International Real-Time Systems Symposium, Lisbon, Portugal, 5–8 December 2004; pp. 296–305. [Google Scholar]
- Zhao, W.; Ammar, M. Message ferrying: Proactive routing in highly-partitioned wireless ad hoc networks. In Proceedings of the Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS 2003), San Juan, PR, USA, 30 May 2003; pp. 308–314. [Google Scholar] [CrossRef]
- Zhao, W.; Ammar, M.; Zegura, E. A message ferrying approach for data delivery in sparse mobile ad hoc networks. In Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Tokyo, Japan, 24–26 May 2004; pp. 187–198. [Google Scholar]
- Jarry, A.; Leone, P.; Nikoletseas, S.; Rolim, J. Optimal data gathering paths and energy-balance mechanisms in wireless networks. Ad Hoc Netw. 2011, 9, 1036–1048. [Google Scholar] [CrossRef] [Green Version]
- Kinalis, A.; Nikoletseas, S.; Patroumpa, D.; Rolim, J. Biased sink mobility with adaptive stop times for low latency data collection in sensor networks. Inf. Fusion 2014, 15, 56–63, Special Issue: Resource Constrained Networks. [Google Scholar] [CrossRef]
- Lai, Y.L.; Jiang, J.R. A genetic algorithm for data mule path planning in wireless sensor networks. Appl. Math 2013, 7, 413–419. [Google Scholar] [CrossRef]
- Xu, R.; Dai, H.; Jia, Z.; Qiu, M.; Wang, B. A piecewise geometry method for optimizing the motion planning of data mule in tele-health wireless sensor networks. Wirel. Netw. 2014, 20, 1839–1858. [Google Scholar] [CrossRef]
- Martinez-de Dios, J.R.; Lferd, K.; de San Bernabé, A.; Núnez, G.; Torres-González, A.; Ollero, A. Cooperation between uas and wireless sensor networks for efficient data collection in large environments. J. Intell. Robot. Syst. 2013, 70, 491–508. [Google Scholar] [CrossRef]
- Yuan, B.; Orlowska, M.; Sadiq, S. On the optimal robot routing problem in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 2007, 19, 1252–1261. [Google Scholar] [CrossRef] [Green Version]
- Golden, B.L.; Levy, L.; Vohra, R. The orienteering problem. Nav. Res. Logist. 1987, 34, 307–318. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Souffriau, W.; Van Oudheusden, D. The orienteering problem: A survey. Eur. J. Oper. Res. 2011, 209, 1–10. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Caceres-Cruz, J.; Arias, P.; Guimarans, D.; Riera, D.; Juan, A.A. Rich vehicle routing problem: Survey. ACM Comput. Surv. (CSUR) 2015, 47, 32. [Google Scholar] [CrossRef]
- Ma, M.; Yang, Y.; Zhao, M. Tour planning for mobile data-gathering mechanisms in wireless sensor networks. IEEE Trans. Veh. Technol. 2013, 62, 1472–1483. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, X.; Zhu, J.; Huang, H.; Wu, M. Multiobjective scheduling of logistics UAVs based on variable neighborhood search. Appl. Sci. 2020, 10, 3575. [Google Scholar] [CrossRef]
- Konstantopoulos, C.; Mpitziopoulos, A.; Gavalas, D.; Pantziou, G. Effective determination of mobile agent itineraries for data aggregation on sensor networks. IEEE Trans. Knowl. Data Eng. 2010, 22, 1679–1693. [Google Scholar] [CrossRef]
- Labadie, N.; Mansini, R.; Melechovskỳ, J.; Calvo, R.W. The team orienteering problem with time windows: An lp-based granular variable neighborhood search. Eur. J. Oper. Res. 2012, 220, 15–27. [Google Scholar] [CrossRef]
- Verbeeck, C.; Sörensen, K.; Aghezzaf, E.H.; Vansteenwegen, P. A fast solution method for the time-dependent orienteering problem. Eur. J. Oper. Res. 2014, 236, 419–432. [Google Scholar] [CrossRef]
- Taş, D.; Gendreau, M.; Jabali, O.; Laporte, G. The traveling salesman problem with time-dependent service times. Eur. J. Oper. Res. 2016, 248, 372–383. [Google Scholar] [CrossRef]
- Chang, J.H.; Jan, R.H. Message ferry routing algorithm for data collection in partitioned and buffer-limited wireless sensor networks. J. Inf. Sci. Eng. 2012, 28, 655–669. [Google Scholar]
- Soylu, B. A general variable neighborhood search heuristic for multiple traveling salesmen problem. Comput. Ind. Eng. 2015, 90, 390–401. [Google Scholar] [CrossRef]
- Hu, Y.; Yao, Y.; Lee, W.S. A reinforcement learning approach for optimizing multiple traveling salesman problems over graphs. Knowl.-Based Syst. 2020, 204, 106244. [Google Scholar] [CrossRef]
- Yang, C.; Szeto, K.Y. Solving the traveling salesman problem with a multi-agent system. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 158–165. [Google Scholar]
- da Silva, A.A.; Morabito, R.; Pureza, V. Optimization approaches to support the planning and analysis of travel itineraries. Expert Syst. Appl. 2018, 112, 321–330. [Google Scholar] [CrossRef]
- Manyam, S.G.; Rasmussen, S.; Casbeer, D.W.; Kalyanam, K.; Manickam, S. Multi-UAV routing for persistent intelligence surveillance & reconnaissance missions. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 573–580. [Google Scholar]
- Scott, D.; Manyam, S.G.; Casbeer, D.W.; Kumar, M. Market approach to length constrained min-max multiple depot multiple traveling salesman problem. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 138–143. [Google Scholar]
- Tsilomitrou, O.; Evangeliou, N.; Tzes, A. Mobile robot tour scheduling acting as data mule in a wireless sensor network. In Proceedings of the 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Thessaloniki, Greece, 10–13 April 2018; pp. 327–332. [Google Scholar]
- Tsilomitrou, O.; Tzes, A.; Manesis, S. Mobile robot trajectory planning for large volume data-muling from wireless sensor nodes. In Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 1005–1010. [Google Scholar]
- Dunkels, A. Rime—A lightweight layered communication stack for sensor networks. In Proceedings of the European Conference on Wireless Sensor Networks (EWSN), Delft, The Netherlands, 29–31 January 2007. [Google Scholar]
- Dunkels, A.; Österlind, F.; He, Z. An Adaptive Communication Architecture for Wireless Sensor Networks. In Proceedings of the 5th International Conference on Embedded Networked Sensor Systems (SenSys ’07), Sydney, Australia, 6–9 November 2007; ACM: New York, NY, USA, 2007; pp. 335–349. [Google Scholar]
- Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Tampa, FL, USA, 16–18 November 2004; pp. 455–462. [Google Scholar]
- Cacchiani, V.; Contreras-Bolton, C.; Toth, P. Models and Algorithms for the Traveling Salesman Problem with Time-dependent Service times. Eur. J. Oper. Res. 2020, 283, 825–843. [Google Scholar] [CrossRef]
Iteration Steps | Route Nodes | Route Duration () | depot2node_duration () | Priority Nodes | e () | Data Loss Nodes |
---|---|---|---|---|---|---|
1 | [1 4 7 1] [1 6 5 1] | 324.5 301.6 | [324.5 0 0 81.3 0 0 246.2] [301.6 0 0 0 223.5 134.1 0] | [5 6] | [0 695.5 815.5 596.8 439.0 469.6 581.7] | [-] |
2 | [1 4 7 1] [1 6 5 1] | 324.5 301.6 | [324.5 0 0 81.3 0 0 246.2] [301.6 0 0 0 223.5 134.1 0] | [2 3 5 6] | [0 311.0 431.0 596.8 439.0 469.6 581.7] | [-] |
3 | [1 2 5 1] [1 3 1] | 352.1 346.6 | [352.1 126.6 0 0 274.0 0 0] [346.6 0 207.3 0 0 0 0] | [4 5 7] | [0 794.5 995.2 184.8 461.9 660.0 169.7] | [6] |
4 | [1 6 5 1] [1 7 4 1] | 301.6 324.5 | [301.6 0 0 0 223.5 134.1 0] [324.5 0 0 250.2 0 0 117.3] | [2 5 6 7] | [0 410.0 610.7 765.7 439.0 469.6 452.8] | [-] |
5 | [1 5 6 1] [1 7 2 1] | 301.6 353.9 | [301.6 0 0 0 93.1 201.4 0] [353.9 251.3 0 0 0 0 117.3] | [3 4 5 7] | [0 917.4 196.9 351.8 279.2 507.6 423.4] | [-] |
6 | [1 5 6 1] [1 4 7 1] | 301.6 324.5 | [301.6 0 0 0 93.1 201.4 0] [324.5 0 0 81.3 0 0 246.2] | [5] | [0 532.9 1140.0 596.8 308.6 536.9 581.7] | [3] |
7 | [1 5 6 1] [1 2 7 1] | 301.6 353.9 | [301.6 0 0 0 93.1 201.4 0] [353.9 126.6 0 0 0 0 275.6] | [4 5] | [0 792.7 726.1 183.0 279.2 507.6 581.7] | [-] |
8 | [1 4 7 1] [1 5 6 1] | 324.5 301.6 | [324.5 0 0 81.3 0 0 246.2] [301.6 0 0 0 93.1 201.4 0] | [2 3 5] | [0 408.2 341.7 596.8 308.6 537.0 581.7] | [-] |
9 | [1 2 5 1] [1 3 1] | 352.1 346.6 | [352.8 126.6 0 0 274.0 0 0] [346.6 0 207.3 0 0 0 0] | [4 5 6 7] | [0 794.5 995.2 184.8 461.9 124.9 169.7] | [-] |
10 | [1 5 6 1] [1 7 4 1] | 301.6 324.5 | [301.6 0 0 0 93.1 201.4 0] [324.5 0 0 250.2 0 0 117.3] | [2 5 7] | [0 410.0 610.7 765.7 308.6 536.9 452.8] | [-] |
11 | [1 5 6 1] [1 2 7 1] | 301.6 353.9 | [301.6 0 0 0 93.1 201.4 0] [353.9 126.6 0 0 0 0 275.6] | [3 4 5] | [0 792.7 196.9 351.8 279.2 507.6 581.7] | [-] |
12 | [1 4 5 1] [1 3 1] | 274.6 346.6 | [274.6 0 0 81.3 196.5 0 0] [346.6 0 207.3 0 0 0 0] | [2 5 6 7] | [0 386.2 1140.0 574.8 389.9 101.0 175.2] | [-] |
13 | [1 7 2 1] [1 6 5 1] | 353.9 301.6 | [353.9 251.3 0 0 0 0 117.3] [301.6 0 0 0 223.5 134.1 0] | [4 5 7] | [0 917.4 726.1 160.9 409.6 660.0 423.4] | [-] |
14 | [1 7 4 1] [1 5 6 1] | 324.5 301.6 | [324.5 0 0 250.2 0 0 117.3] [301.6 0 0 0 93.1 201.4 0] | [3 5 7] | [0 532.9 341.7 765.7 308.6 537.0 452.8] | [-] |
15 | [1 3 1] [1 2 5 1] | 346.6 352.1 | [346.6 0 207.3 0 0 0 0] [352.1 126.6 0 0 274.0 0 0] | [4 5 6] | [0 794.5 995.2 353.6 461.9 124.9 660.0] | [7] |
Iteration Steps | Route Nodes | Route Duration () | depot2node_duration () | Priority Nodes | e () | Data Loss Nodes |
---|---|---|---|---|---|---|
1 | [1 2 6 1] [1 7 1] [1 4 5 1] | 339.8 195.5 274.6 | [339.8 126.6 0 0 0 239.6 0] [195.5 0 0 0 0 0 117.3] [274.6 0 0 81.3 196.5 0 0] | [5 7] | [0 806.8 800.2 581.6 396.7 559.9 437.5] | [-] |
2 | [1 4 1] [1 5 6 1] [1 7 1] | 155.7 301.6 195.5 | [155.7 0 0 81.3 0 0 0] [301.6 0 0 0 93.1 201.4 0] [195.5 0 0 0 0 0 117.3] | [2 3 5 7] | [0 445.3 438.7 619.8 331.5 559.9 475.7] | [-] |
3 | [1 3 1] [1 6 5 1] [1 7 2 1] | 346.6 301.6 353.9 | [346.6 0 207.3 0 0 0 0] [301.6 0 0 0 223.5 134.1 0] [353.9 251.3 0 0 0 0 117.3] | [4 5 6 7] | [0 917.4 993.4 205.9 409.6 440.3 423.4] | [-] |
4 | [1 5 4 1] [1 7 1] [1 2 6 1] | 274.6 195.5 339.8 | [274.6 0 0 200.2 93.1 0 0] [195.5 0 0 0 0 0 117.3] [339.8 126.6 0 0 0 239.6 0] | [5 7] | [0 806.8 593.7 700.5 293.3 559.9 437.5] | [-] |
5 | [1 3 1] [1 4 7 1] [1 5 6 1] | 346.6 324.5 301.6 | [346.6 0 207.3 0 0 0 0] [324.5 0 0 81.3 0 0 246.2] [301.6 0 0 0 93.1 201.4 0] | [2 5] | [0 400.3 1000.7 574.8 286.5 514.9 559.7] | [-] |
6 | [1 2 6 1] [1 7 1] [1 4 5 1] | 339.8 195.5 274.6 | [339.8 126.6 0 0 0 239.6 0] [195.5 0 0 0 0 0 117.3] [274.6 0 0 81.3 196.5 0 0] | [5 7] | [0 806.8 600.9 581.6 396.7 559.9 437.5] | [-] |
7 | [1 4 1] [1 5 6 1] [1 7 1] | 155.7 301.6 195.5 | [155.7 0 0 81.3 0 0 0] [301.6 0 0 0 93.1 201.4 0] [195.5 0 0 0 0 0 117.3] | [2 3 5 7] | [0 445.3 239.4 619.8 331.5 559.9 475.7] | [-] |
8 | [1 3 1] [1 5 6 1] [1 7 2 1] | 346.6 301.6 353.9 | [346.6 0 207.3 0 0 0 0] [301.6 0 0 0 93.1 201.4 0] [353.9 251.3 0 0 0 0 117.3] | [4 5 7] | [0 917.4 993.4 206.0 279.2 507.6 423.4] | [-] |
9 | [1 7 1] [1 6 2 1] [1 5 4 1] | 195.5 339.8 274.6 | [195.5 0 0 0 0 0 117.3] [339.8 237.2 0 0 0 134.1 0] [274.6 0 0 200.2 93.1 0 0] | [5 6 7] | [0 917.4 593.7 700.5 293.3 454.4 437.5] | [-] |
10 | [1 4 7 1] [1 5 6 1] [1 3 1] | 324.5 301.6 346.6 | [324.5 0 0 81.3 0 0 246.2] [301.6 0 0 0 93.1 201.4 0] [346.6 0 207.3 0 0 0 0] | [5] | [0 510.8 1000.7 574.8 286.5 514.9 559.7] | [-] |
11 | [1 7 1] [1 2 6 1] [1 4 5 1] | 195.5 339.8 274.6 | [195.5 0 0 0 0 0 117.3] [339.8 126.6 0 0 0 239.6 0] [274.6 0 0 81.3 196.5 0 0] | [5 7] | [0 806.8 600.9 581.6 396.7 559.9 437.5] | [-] |
12 | [1 4 1] [1 5 6 1] [1 7 1] | 155.7 301.6 195.5 | [155.7 0 0 81.3 0 0 0] [301.6 0 0 0 93.1 201.4 0] [195.5 0 0 0 0 0 117.3] | [2 3 5 7] | [0 445.3 239.4 619.8 331.5 559.9 475.7] | [-] |
13 | [1 3 1] [1 5 6 1] [1 7 2 1] | 346.6 301.6 353.9 | [346.6 0 207.3 0 0 0 0] [301.6 0 0 0 93.1 201.4 0] [353.9 251.3 0 0 0 0 117.3] | [4 5 7] | [0 917.4 993.4 205.9 279.2 507.6 423.4] | [-] |
14 | [1 7 1] [1 6 2 1] [1 5 4 1] | 195.5 339.8 274.6 | [195.5 0 0 0 0 0 117.3] [339.8 237.2 0 0 0 134.1 0] [274.6 0 0 200.2 93.1 0 0] | [5 6 7] | [0 917.4 593.7 700.5 293.3 454.4 437.5] | [-] |
15 | [1 4 7 1] [1 5 6 1] [1 3 1] | 324.5 301.6 346.6 | [324.5 0 0 81.3 0 0 246.2] [301.6 0 0 0 93.1 201.4 0] [346.6 0 207.3 0 0 0 0] | [5] | [0 510.8 1000.7 574.8 286.5 514.9 559.7] | [-] |
Iteration Steps | Route Nodes | Route Duration () | depot2node_duration () | Priority Nodes | e () | Data Loss Nodes |
---|---|---|---|---|---|---|
1 | [1 4 3 12 1] [1 7 2 1] [1 5 6 1] | 390.0 341.9 301.6 | [390.0 0 224.3 81.3 0 0 0 0 0 0 0 310.0 0] [341.9 219.4 0 0 0 0 117.3 0 0 0 0 0 0] [301.6 0 0 0 93.1 201.4 0 0 0 0 0 0 0] | [-] | [0 1569.3 1274.3 831.3 843.1 1251.4 1167.2 1350.0 1950.0 1950.0 1950.0 1060.0 1350.0] | [-] |
2 | [1 4 3 12 1] [1 8 7 1] [1 6 5 1] | 390.0 377.9 301.6 | [390.0 0 224.3 81.3 0 0 0 0 0 0 0 310.0 0] [377.9 0 0 0 0 0 299.6 150.6 0 0 0 0 0] [301.6 0 0 0 223.5 134.1 0 0 0 0 0 0 0] | [-] | [0 1119.3 1274.3 831.3 973.4 1184.1 1349.6 1500.6 1499.9 1499.9 1499.9 1060.0 899.9] | [-] |
3 | [1 6 5 12 1] [1 7 10 4 1] [1 2 13 1] | 372.3 385.7 375.7 | [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] [385.7 0 0 311.4 0 0 117.3 0 0 214.3 0 0 0] [375.1 146.6 0 0 0 0 0 0 0 0 0 0 230.1] | [-] | [0 1500.8 828.6 1065.7 977.7 1188.4 1171.5 1054.8 1054.2 2168.5 1054.2 1046.6 1584.3] | [-] |
4 | [1 12 3 4 1] [1 11 5 1] [1 8 7 1] | 390.0 367.8 377.9 | [390.0 0 233.7 315.7 0 0 0 0 0 0 0 95.0 0] [367.8 0 0 0 289.7 0 0 0 0 0 187.2 0 0] [377.9 0 0 0 0 0 299.6 150.6 0 0 0 0 0] | [-] | [0 1050.8 1283.7 1065.7 1039.7 738.3 1349.6 1500.6 604.1 1718.5 2137.2 845.0 1134.3] | [-] |
5 | [1 7 10 4 1] [1 12 5 6 1] [1 2 13 1] | 385.7 372.3 375.1 | [385.7 0 0 311.4 0 0 117.3 0 0 214.30 0 0] [372.3 0 0 0 163.9 272.2 0 0 0 0 0 95.0 0] [375.1 146.6 0 0 0 0 0 0 0 0 0 0 230.1] | [9] | [0 1500.8 837.9 1065.7 918.1 1326.4 1171.5 1054.8 158.4 2168.5 1691.5 849.3 1584.3] | [-] |
6 | [1 9 1] [1 5 1] [1 4 12 1] | 397.0 171.2 232.2 | [397.0 0 0 0 0 0 0 0 202.0 0 0 0 0] [171.2 0 0 0 93.1 0 0 0 0 0 0 0 0] [232.2 0 0 81.3 0 0 0 0 0 0 0 152.2 0] | [3] | [0 1043.8 380.9 824.3 836.1 869.4 714.5 597.8 2145.0 1711.5 1234.5 895.2 1127.3] | [-] |
7 | [1 6 5 1] [1 12 3 4 1] [1 7 8 1] | 301.6 390.0 377.9 | [301.6 0 0 0 23.5 134.1 0 0 0 0 0 0 0] [390.0 0 233.7 315.7 0 0 0 0 0 0 0 95.0 0] [377.9 0 0 0 0 0 117.3 275.3 0 0 0 0 0] | [-] | [0 593.8 1283.7 1065.7 973.4 1184.1 1167.2 1625.2 1695.0 1261.5 784.4 845.0 677.3] | [-] |
8 | [1 13 2 1] [1 12 5 6 1] [1 7 10 4 1] | 375.1 372.3 385.7 | [375.1 252.5 0 0 0 0 0 0 0 0 0 0 152.0] [372.3 0 0 0 163.9 272.2 0 0 0 0 0 95.0 0] [385.7 0 0 311.4 0 0 117.3 0 0 214.3 0 0 0] | [11] | [0 1606.7 837.9 1065.7 918.1 1326.4 1171.5 1179.5 1249.2 2168.5 338.7 849.3 1506.3] | [-] |
9 | [1 5 11 1] [1 8 7 1] [1 4 3 12 1] | 367.8 377.9 390.0 | [367.8 0 0 0 93.1 0 0 0 0 0 204.6 0 0] [377.9 0 0 0 0 0 299.6 150.6 0 0 0 0 0] [390.0 0 224.3 81.3 0 0 0 0 0 0 0 310.0 0] | [-] | [0 1156.7 1274.3 831.3 843.1 876.4 1349.6 1500.6 799.2 1718.5 2154.5 1060.0 1056.2] | [-] |
10 | [1 6 13 1] [1 5 12 4 1] [1 9 1] | 396.1 299.2 397.0 | [396.1 0 0 0 0 134.1 0 0 0 0 0 0 251.1] [299.2 0 0 224.9 93.1 0 0 0 0 0 0 162.00] [397.0 0 0 0 0 0 0 0 202.0 0 0 0 0] | [-] | [0 699.7 817.3 967.9 836.1 1177.1 892.6 1043.6 2145.0 1261.5 1697.5 905.0 1594.1] | [-] |
Iteration Steps | Route Nodes | Route Duration () | depot2node_duration () | Priority Nodes | e () | Data Loss Nodes |
---|---|---|---|---|---|---|
1 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [-] | [0 1354.3 1054.3 835.6 977.7 1188.4 1361.7 1504.9 1954.3 2140.7 1954.3 1046.6 1554.9] | [-] |
2 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [-] | [0 908.5 608.5 835.6 977.7 1188.4 1361.7 1504.9 1508.5 2140.7 1508.5 1046.6 1554.9] | [-] |
3 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [2 3] | [0 462.8 162.8 835.6 977.7 1188.4 1361.7 1504.9 1062.8 2140.7 1062.8 1046.6 1554.9] | [-] |
4 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [-] | [0 1740.0 1440.0 835.6 977.7 1188.4 1361.7 1504.9 617.0 2140.7 617.0 1046.6 1554.9] | [2 3] |
5 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [9 11] | [0 1294.3 994.3 835.6 977.7 1188.4 1361.7 1504.9 171.3 2140.7 171.3 1046.6 1554.9] | [-] |
6 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [3] | [0 848.5 548.5 835.6 977.7 1188.4 1361.7 1504.9 2340.0 2140.7 2340.0 1046.6 1554.9] | [9 11] |
7 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [2] | [0 402.8 1440.0 835.6 977.7 1188.4 1361.7 1504.9 1894.3 2140.7 1894.3 1046.6 1554.9] | [3] |
8 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [-] | [0 1740.0 994.3 835.6 977.7 1188.4 1361.7 1504.9 1448.5 2140.7 1448.5 1046.6 1554.9] | [2] |
9 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [3] | [0 1294.3 548.5 835.6 977.7 1188.4 1361.7 1504.9 1002.8 2140.7 1002.8 1046.6 1554.9] | [-] |
10 | [1 8 13 1] [1 4 10 7 1] [1 6 5 12 1] | 372.3 345.6 385.7 | [345.6 0 0 0 0 0 0 150.6 0 0 0 0 200.6] [385.7 0 0 81.3 0 0 307.5 0 0 186.5 0 0 0] [372.3 0 0 0 223.5 134.1 0 0 0 0 0 292.3 0] | [-] | [0 848.5 1440.0 835.6 977.7 1188.4 1361.7 1504.9 557.0 2140.7 557.0 1046.6 1554.9] | [3] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsilomitrou, O.; Tzes, A. Mobile Data-Mule Optimal Path Planning for Wireless Sensor Networks. Appl. Sci. 2022, 12, 247. https://doi.org/10.3390/app12010247
Tsilomitrou O, Tzes A. Mobile Data-Mule Optimal Path Planning for Wireless Sensor Networks. Applied Sciences. 2022; 12(1):247. https://doi.org/10.3390/app12010247
Chicago/Turabian StyleTsilomitrou, Ourania, and Anthony Tzes. 2022. "Mobile Data-Mule Optimal Path Planning for Wireless Sensor Networks" Applied Sciences 12, no. 1: 247. https://doi.org/10.3390/app12010247
APA StyleTsilomitrou, O., & Tzes, A. (2022). Mobile Data-Mule Optimal Path Planning for Wireless Sensor Networks. Applied Sciences, 12(1), 247. https://doi.org/10.3390/app12010247