Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Identification
2.2. Design of the Springs IICAD System
2.3. Spring Materials
2.4. Mathematical Models of Compression and Torsion Springs
2.5. Trial and Error Method
- –
- Assume the spring dimensions (primarily wire diameter );
- –
- Acquire ultimate tensile strength of the spring material and calculate permissible stress;
- –
- Calculate induced stresses with the Equations (1) and (2);
- –
- Examine if the permissible stress is greater than induced stress. If not, above steps should be repeated with the greater wire diameter;
- –
- The procedure needs to be repeated until the value of induced stress is less than the value of the permissible stress.
2.6. Parametrization and Generation of the 3D Models
2.7. Spring Model Configurations
3. Results
3.1. FEM Analysis Results
3.2. Physical Prototypes
3.3. Output Data Report Generation
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Chen, L.; Fu, H.; Jiang, Q.; Wu, X.; Tang, Y. Carbon fiber composite multistrand helical springs with adjustable spring constant: Design and mechanism studies. J. Mater. Res. Technol. 2020, 9, 5067–5076. [Google Scholar] [CrossRef]
- Takahashi, T.; Zehnder, J.; Okuno, H.G.; Sugano, S.; Coros, S.; Thomaszewski, B. Computational Design of Statically Balanced Planar Spring Mechanisms. IEEE Robot. Autom. Lett. 2019, 4, 4438–4444. [Google Scholar] [CrossRef]
- Ke, J.; Wu, Z.Y.; Liu, Y.S.; Xiang, Z.; Hu, X.D. Design method, performance investigation and manufacturing process of composite helical springs: A review. Compos. Struct. 2020, 252, 112747. [Google Scholar] [CrossRef]
- Nazir, A.; Ali, M.; Hsieh, C.H.; Jeng, J.Y. Investigation of stiffness and energy absorption of variable dimension helical springs fabricated using multijet fusion technology. Int. J. Adv. Manuf. Technol. 2020, 110, 2591–2602. [Google Scholar] [CrossRef]
- Zebdi, O.; Boukhili, R.; Trochu, F. Optimum design of a composite helical spring by multi-criteria optimization. J. Reinf. Plast. Compos. 2009, 28, 1713–1732. [Google Scholar] [CrossRef]
- Kobelev, V. Elastic–plastic deformation and residual stresses in helical springs. Multidiscip. Model. Mater. Struct. 2020, 16, 448–475. [Google Scholar] [CrossRef]
- Wan, J.; Li, J.; Hua, Q.; Celesti, A.; Wang, Z. Intelligent equipment design assisted by Cognitive Internet of Things and industrial big data. Neural Comput. Appl. 2020, 32, 4463–4472. [Google Scholar] [CrossRef]
- Belman-Lopez, C.E.; Jiménez-García, J.A.; Hernández-González, S. Comprehensive analysis of design principles in the context of Industry 4.0. Rev. Iberoam. Automática Inf. Ind. 2020, 17, 432–447. [Google Scholar] [CrossRef]
- Patel, A.R.; Ramaiya, K.K.; Bhatia, C.V.; Shah, H.N.; Bhavsar, S.N. Artificial Intelligence: Prospect in Mechanical Engineering Field—A Review. In Data Science and Intelligent Applications; Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2021; Volume 52, pp. 267–282. [Google Scholar]
- Saric, I.; Muminovic, A.; Colic, M.; Rahimic, S. Development of integrated intelligent computer-aided design system for mechanical power-transmitting mechanism design. Adv. Mech. Eng. 2017, 9, 1687814017710389. [Google Scholar] [CrossRef]
- Novak, M.; Dolšak, B. Intelligent FEA-based design improvement. Eng. Appl. Artif. Intell. 2008, 21, 1239–1254. [Google Scholar] [CrossRef]
- Bulut Özek, M.; Akpolat, Z.H.; Orhan, A. A web-based intelligent tutoring system for a basic control course. Comput. Appl. Eng. Educ. 2013, 21, 561–571. [Google Scholar] [CrossRef]
- Saric, I.; Pervan, N.; Muminovic, A.; Colic, M. Development of integrated intelligent cad system for design of shafts. Teh. Vjesn. 2018, 25, 99–104. [Google Scholar]
- Klancnik, S.; Brezocnik, M.; Balic, J. Intelligent CAD/CAM system for programming of CNC machine tools. Int. J. Simul. Model. 2016, 15, 109–120. [Google Scholar] [CrossRef]
- Valles González, M.P.; García-Martínez, M.; Pastor Muro, A. Study of a torsion spring fracture. Eng. Fail. Anal. 2019, 98, 150–155. [Google Scholar] [CrossRef]
- Yang, C.J.; Zhang, W.H.; Ren, G.X.; Liu, X.Y. Modeling and dynamics analysis of helical spring under compression using a curved beam element with consideration on contact between its coils. Meccanica 2014, 49, 907–917. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, D.; Guo, Y.; Cheng, P.; Shao, C.; Lang, N.; Liu, X.; Huang, J. Fatigue failure analysis and finite element assessment of the twins torsion spring. Eng. Fail. Anal. 2021, 122, 105187. [Google Scholar] [CrossRef]
- Kumar, K.; Aggarwal, M.L. Finite element analysis and optimization of a mono parabolic leaf spring using cae software. Eng. Solid Mech. 2015, 3, 85–92. [Google Scholar] [CrossRef]
- Song, X.; Li, B.H.; Chai, X. Research on key technologies of complex product virtual prototype lifecycle management (CPVPLM). Simul. Model. Pract. Theory 2008, 16, 387–398. [Google Scholar] [CrossRef]
- Mykhaskiv, O.; Banović, M.; Auriemma, S.; Mohanamuraly, P.; Walther, A.; Legrand, H.; Müller, J.D. NURBS-based and parametric-based shape optimization with differentiated CAD kernel. Comput.-Aided Des. Appl. 2018, 15, 916–926. [Google Scholar] [CrossRef] [Green Version]
- Chandravanshi, M.L.; Mukhopadhyay, A.K. Analysis of variations in vibration behavior of vibratory feeder due to change in stiffness of helical springs using FEM and EMA methods. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 3343–3362. [Google Scholar] [CrossRef]
- Tan, P.S.; Farid, A.A.; Karimzadeh, A.; Rahimian Koloor, S.S.; Petrů, M. Investigation on the curvature correction factor of extension spring. Materials 2020, 13, 4199. [Google Scholar] [CrossRef] [PubMed]
- Kreis, A.; Walzel, B.; Schäfer, U.; Hirz, M. Onsite medical implants creation by combination of enhanced design methods and 3d printing. Comput. Aided. Des. Appl. 2022, 19, 336–345. [Google Scholar] [CrossRef]
- Mandičák, T.; Behúnová, A.; Mésároš, P.; Knapčíková, L. Current state of knowledge-based systems used in architecture, engineering and construction. TEM J. 2020, 9, 716–721. [Google Scholar] [CrossRef]
- Zheng, C.; Xing, J.; Wang, Z.; Qin, X.; Eynard, B.; Li, J.; Bai, J.; Zhang, Y. Knowledge-based program generation approach for robotic manufacturing systems. Robot. Comput. Integr. Manuf. 2022, 73, 102242. [Google Scholar] [CrossRef]
- Guo, L.; Yan, F.; Li, T.; Yang, T.; Lu, Y. An automatic method for constructing machining process knowledge base from knowledge graph. Robot. Comput. Integr. Manuf. 2022, 73, 102222. [Google Scholar] [CrossRef]
- Aztiria, A.; Augusto, J.C.; Basagoiti, R.; Izaguirre, A.; Cook, D.J. Discovering frequent user-environment interactions in intelligent environments. Pers. Ubiquitous Comput. 2012, 16, 91–103. [Google Scholar] [CrossRef]
- Sha, W.; Guo, Y.; Yuan, Q.; Tang, S.; Zhang, X.; Lu, S.; Guo, X.; Cao, Y.-C.; Cheng, S. Artificial Intelligence to Power the Future of Materials Science and Engineering. Adv. Intell. Syst. 2020, 2, 1900143. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Albagul, A.; Algitta, A. Optimization of Pid Parameters Based on Particle Swarm Optimization for Ball and Beam System. Int. J. Eng. Technol. Manag. Res. 2020, 5, 59–69. [Google Scholar] [CrossRef]
- Ghionea, I.G.; Devedžić, G.; Ćuković, S. Parametric Modeling of Surfaces Using CATIA v5 Environment. Appl. Mech. Mater. 2015, 760, 93–98. [Google Scholar] [CrossRef]
- Xu, S.; Timme, S.; Mykhaskiv, O.; Müller, J.D. Wing-body junction optimisation with CAD-based parametrisation including a moving intersection. Aerosp. Sci. Technol. 2017, 68, 543–551. [Google Scholar] [CrossRef]
- Wang, C.; Wen, C.; Dai, Y.; Yu, S.; Liu, M. Urban 3D modeling with mobile laser scanning: A review. Virtual Real. Intell. Hardw. 2020, 2, 175–212. [Google Scholar] [CrossRef]
- Tian, C. 3D modeling and digital preservation of ancient architectures based on autoCAD and 3Dmax. Comput. Aided. Des. Appl. 2020, 17, 100–110. [Google Scholar] [CrossRef]
- Nabagło, T.; Jurkiewicz, A.; Kowal, J. Modeling verification of an advanced torsional spring for tracked vehicle suspension in 2S1 vehicle model. Eng. Struct. 2021, 229, 111623. [Google Scholar] [CrossRef]
- Calaf-Chica, J.; Bravo Díez, P.M.; Preciado Calzada, M.; Ballorca-Juez, D. A systematic FEM analysis of the influence of mechanical properties in the reliability of the correlation methods in the small punch test. Int. J. Mech. Sci. 2019, 153–154, 299–309. [Google Scholar] [CrossRef]
- Bertrand, C.; Acary, V.; Lamarque, C.H.; Ture Savadkoohi, A. A robust and efficient numerical finite element method for cables. Int. J. Numer. Methods Eng. 2020, 121, 4157–4186. [Google Scholar] [CrossRef]
- Carbonell, J.M.; Rodríguez, J.M.; Oñate, E. Modelling 3D metal cutting problems with the particle finite element method. Comput. Mech. 2020, 66, 603–624. [Google Scholar] [CrossRef]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Cao, D.X.; Fu, M.W. A knowledge-based prototype system to support Product Conceptual Design. Comput. Aided. Des. Appl. 2011, 8, 129–147. [Google Scholar] [CrossRef]
- Singer, G.; Golan, M.; Cohen, Y. From product documentation to a method prototype and standard times: A new technique for complex manual assembly. Int. J. Prod. Res. 2014, 52, 507–520. [Google Scholar] [CrossRef]
- Ribeiro, D.; Cimino, S.R.; Mayo, A.L.; Ratto, M.; Hitzig, S.L. 3D printing and amputation: A scoping review. Disabil. Rehabil. Assist. Technol. 2021, 16, 221–240. [Google Scholar] [CrossRef]
- Cai, G.; Cheng, X.; Wang, D. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates. Cailiao Yanjiu Xuebao/Chin. J. Mater. Res. 2020, 34, 635–640. [Google Scholar]
- Belov, V.F.; Gavryushin, S.S.; Markova, Y.N. A Mathematical Model of Distributed Prototype Design in Mechanical Engineering. Proc. High. Educ. Inst. Machine Build. 2019, 9, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Eren, N.; Brunesi, E.; Nascimbene, R. Influence of masonry infills on the progressive collapse resistance of reinforced concrete framed buildings. Eng. Struct. 2019, 178, 375–394. [Google Scholar] [CrossRef]
Developed Parameters/Spring Type | Number of Revolutions (-) | Pitch Value (mm) | Spring Diameter (mm) | Wire Diameter (mm) | Length of Free Ends (mm) |
---|---|---|---|---|---|
Compression | ✓ | ✓ | ✓ | ✓ | ✗ |
Torsion | ✓ | ✓ | ✓ | ✓ | ✓ |
Mesh Property/ Spring Type | Number of Finite Elements | Number of Nodes |
---|---|---|
Compression | 17,213 | 34,414 |
Torsion | 60,428 | 12,0947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saric, I.; Muratovic, E.; Muminovic, A.; Muminovic, A.J.; Colic, M.; Delic, M.; Pervan, N.; Mesic, E. Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs. Appl. Sci. 2022, 12, 353. https://doi.org/10.3390/app12010353
Saric I, Muratovic E, Muminovic A, Muminovic AJ, Colic M, Delic M, Pervan N, Mesic E. Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs. Applied Sciences. 2022; 12(1):353. https://doi.org/10.3390/app12010353
Chicago/Turabian StyleSaric, Isad, Enis Muratovic, Adil Muminovic, Adis J. Muminovic, Mirsad Colic, Muamer Delic, Nedim Pervan, and Elmedin Mesic. 2022. "Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs" Applied Sciences 12, no. 1: 353. https://doi.org/10.3390/app12010353
APA StyleSaric, I., Muratovic, E., Muminovic, A., Muminovic, A. J., Colic, M., Delic, M., Pervan, N., & Mesic, E. (2022). Integrated Intelligent CAD System for Interactive Design, Analysis and Prototyping of Compression and Torsion Springs. Applied Sciences, 12(1), 353. https://doi.org/10.3390/app12010353