Two Design Options for Compact Linear Accelerators for High Flux Neutron Source
Abstract
:1. Introduction
2. Proton RFQ Accelerator Design
2.1. Design Strategy of RFQ Beam Dynamics
2.1.1. Vane Voltage and Kilpatrick Limit
2.1.2. Injection Energy
2.1.3. Output Energy
2.2. Beam Dynamics Simulations
2.3. RF Design Studies
3. Physical Design of DTL Accelerator
3.1. Design Philosophy and Constraints
- (1)
- Limiting the peak surface electric field on the drift tubes not exceeding 1.6 times the Kilpatrick limit.
- (2)
- Application of a ramping average E0 field for an easier capture of the proton beam and shortening the tank length to 9.0 m for the 162.5 MHz DTL design. While for the design of 325 MHz DTL, a constant E0 design is applied to maximize the energy acceptance to the proton beam.
3.2. Drift Tube Designs
3.3. Longitudinal Beam Dynamics Considerations
3.4. Transverse Beam Dynamics Considerations
- (1)
- σ0t < 90°/period;
- (2)
- σ0t ≠ nσ0l/2 for n = 1, 3, …;
- (3)
- Equipartitioning ratio ≈ 1.0 at full current;
- (4)
- Avoid known parametric resonances;
3.5. DTL Cavity Studies
4. RF Systems
5. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, I.; Andreani, C.; Carpenter, J.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R. Research Opportunities with Compact Accelerator-driven Neutron Sources. Phys. Rep. 2016, 654, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Baxter, D.V.; Cameron, J.M.; Derenchuk, V.P.; Lavelle, C.M.; Leuschner, M.B.; Lone, M.A.; Meyer, H.O.; Rinckel, T.; Snow, W.M. Status of the Low Energy Neutron Source at Indiana University. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 241, 209–212. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ikeda, S.; Otake, Y.; Ikeda, Y.; Hayashizaki, N. Completion of a New Accelerator-driven Compact Neutron Source Prototype RANS-II for On-site Use. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 994, 165091. [Google Scholar] [CrossRef]
- Zakalek, P.; Cronert, T.; Baggemann, J.; Doege, P.-E.; Rimmler, M.; Voigt, J.; Mauerhofer, E.; Rücker, U.; Gutberlet, T.; Podlech, H.; et al. High-Brilliance Neutron Source Project. J. Phys. Conf. Ser. 2020, 1401, 012010. [Google Scholar] [CrossRef]
- Wei, J.; Chen, H.B.; Huang, W.H.; Tang, C.X.; Xing, Q.Z.; Loong, C.K.; Fu, S.N.; Tao, J.Z.; Guan, X.L.; Shimizu, H.M. Compact Pulsed Hadron Source—A University-based Accelerator Platform for Multidisciplinary Neutron and Proton Applications. In Proceedings of the PAC09, Vancouver, BC, Canada, 4–8 May 2009; pp. 1360–1362. [Google Scholar]
- SNS. Available online: https://neutrons.ornl.gov/sns (accessed on 1 August 2021).
- ISIS. Available online: https://www.isis.stfc.ac.uk/ (accessed on 1 August 2021).
- ESS. Available online: https://europeanspallationsource.se/ (accessed on 1 August 2021).
- J-PARC. Available online: http://j-parc.jp/c/en/ (accessed on 1 August 2021).
- CSNS. Available online: http://english.ihep.cas.cn/csns/ (accessed on 1 August 2021).
- Marchix, A.; Letourneau, A.; Tran, H.N.; Chauvin, N.; Menelle, A.; Ott, F.; Schwindling, J. Saclay Compact Accelerator-driven Neutron Sources (SCANS). J. Phys. Conf. Ser. 2018, 1046, 012009. [Google Scholar] [CrossRef]
- Taskaev, S.Y. Accelerator Based Epithermal Neutron Source. Phys. Part. Nucl. 2015, 46, 956–990. [Google Scholar] [CrossRef]
- Halfon, S.; Paul, M.; Arenshtam, A.; Berkovits, D.; Bisyakoev, M.; Eliyahu, I.; Feinberg, G.; Hazenshprung, N.; Kijel, D.; Nagler, A.; et al. High-power Liquid-lithium Target Prototype for Accelerator-based Boron Neutron Capture Therapy. Appl. Radiat. Isot. 2011, 69, 1654–1656. [Google Scholar] [CrossRef]
- Kobayashi, T.; Miura, K.; Hayashizaki, N.; Aritomi, M. Development of Liquid-lithium Film Jet-flow for the Target of 7Li(p, n)7Be Reactions for BNCT. Appl. Radiat. Isot. 2014, 88, 198–202. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics; CRC Press: Cleveland, OH, USA, 1984; Volume 65.
- Lavelle, C.M. The Neutronic Design and Performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS). Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2010. [Google Scholar]
- Lavelle, C.; Baxter, D.; Bogdanov, A.; Derenchuk, V.; Kaiser, H.; Leuschner, M.; Lone, M.; Lozowski, W.; Nann, H.; Przewoski, B.; et al. Neutronic Design and Measured Performance of the Low Energy Neutron Source (LENS) Target Moderator Reflector Assembly. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 587, 324–341. [Google Scholar] [CrossRef] [Green Version]
- T-2 Nuclear Information Service. Available online: http://t2.lanl.gov/ (accessed on 1 August 2021).
- Leuschner, M.; Baxter, D.V.; Kaiser, H.; Lavelle, C.M.; Lozowski, W.R.; Remmes, N.B.; Rinckel, T.; Snow, M.W.; Sokol, P.E. LENS: A New Low Energy Source Design for Research and Education; Indiana University: Bloomington, IN, USA; Available online: www.indiana.edu/~lens/attachments/publications/LENS-ACNS06.pdf (accessed on 1 August 2021).
- Kondo, Y.; Hasegawa, K.; Morishita, T.; Jameson, R.A. Beam Dynamics Design of a New Radio Frequency Quadrupole for Beam-current Upgrade of the Japan Proton Accelerator Research Complex Linac. Phys. Rev. Spec. Top. -Accel. Beams 2012, 15, 080101. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Arnaudon, L.; Baudrenghien, P.; Bellodi, G.; Brunner, O.; Hansen, J.; Lallement, J.B.; Lombardi, A.M.; Noirjean, J.; Desmons, M.; et al. Commissioning and Operational Experience Gained with the Linac4 RFQ at CERN. In Proceedings of the LINAC2014, Geneva, Switzerland, 31 August–5 September 2014; pp. 926–928. [Google Scholar]
- Ratti, A.; Fong, C.; Fong, M.; MacGill, R.; Gough, R.; Staples, J.; Hoff, M.; Keller, R.; Virostek, S.; Yourd, R. Conceptual Design of the SNS RFQ. In Proceedings of the LINAC98, Chicago, IL, USA, 23–28 August 1998; pp. 276–278. [Google Scholar]
- Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S. Liquid Li Based Neutron Source for BNCT and Science Application. Appl. Radiat. Isot. 2015, 106, 92–94. [Google Scholar] [CrossRef]
- Kondo, Y.; Tamura, J.; Yee-Rendon, B. Reference Design of the RFQ for JAEA ADS Linac. In Proceedings of the 3rd J-PARC Symposium (J-PARC2019), Tsukuba, Japan, 23–26 September 2019; p. 011015. [Google Scholar]
- Zhu, X.; Wang, H.; Lu, Y.; Wang, Z.; Zhu, K.; Zou, Y.; Guo, Z. 2.5 MeV CW 4-vane RFQ Accelerator Design for BNCT Applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 883, 57–74. [Google Scholar] [CrossRef]
- Lu, L.; He, T.; Ma, W.; Shi, L.; Yang, L.; Xing, C.; Xu, X.; Sun, L. Research on an Accelerator-based BNCT Facility. In Proceedings of the IPAC2018, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 1024–1027. [Google Scholar]
- Kilpatrick, W.D. Criterion for Vacuum Sparking Designed to Include Both rf and dc. Rev. Sci. Instrum. 1957, 28, 824–826. [Google Scholar] [CrossRef] [Green Version]
- Ratti, A.; DiGennaro, R.; Gough, R.A.; Hoff, M.; Keller, R.; Kennedy, K.; MacGill, R.; Staples, J.; Virostek, S.; Yourd, R. The Design of a High Current, High Duty Factor RFQ for the SNS. In Proceedings of the EPAC 2000, Vienna, Austria, 26–30 June 2000; pp. 495–497. [Google Scholar]
- Rossi, C.; Bourquin, P.; Lallement, J.B.; Lombardi, A.M.; Mathot, S.; Timmins, M.; Vandoni, G.; Vretenar, M.; Cazaux, S.; Delferriere, O.; et al. The Radiofrequency Quadrupole Accelerator for the Linac4. In Proceedings of the LINAC08, Victoria, BC, Canada, 29 September–3 October 2008; pp. 157–159. [Google Scholar]
- Fu, S.; Fang, S.; Wei, J. China Spallation Neutron Source Linac Design. In Proceedings of the LINAC 2006, Knoxville, TN, USA, 20–25 August 2006; pp. 222–226. [Google Scholar]
- Li, Z.; Cheng, P.; Geng, H.; Guo, Z.; He, Y.; Meng, C.; Ouyang, H.; Pei, S.; Sun, B.; Sun, J.; et al. Physics Design of an Accelerator for an Accelerator-driven Subcritical System. Phys. Rev. Spec. Top.-Accel. Beams 2013, 16, 080101. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, Z.; Qi, X.; Xu, X.; He, Y.; Yang, L. Beam Dynamics Study of RFQ for CADS with a 3D Space-charge-effect. Chin. Phys. C 2014, 38, 037005. [Google Scholar] [CrossRef]
- Zhang, C.; Schempp, A. Beam Dynamics Studies on a 200 mA Proton Radio Frequency Quadrupole Accelerator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 586, 153–159. [Google Scholar] [CrossRef]
- Xing, Q.Z.; Cai, J.C.; Bai, Y.J.; Cheng, C.; Du, T.B.; Guan, X.L.; Wei, J.; Xiong, Z.F.; Zhang, H.Y.; Zheng, S.X.; et al. Design of the CPHS RFQ Linac at Tsinghua University. In Proceedings of the IPAC’10, Kyoto, Japan, 23–28 May 2010; pp. 792–794. [Google Scholar]
- Eshraqi, M.; Danared, H.; De Prisco, R.; Jansson, A.; Levinsen, Y.; Lindroos, M.; Miyamoto, R.; Muñoz, M.; Ponton, A. ESS Linac Beam Physics Design Update. In Proceedings of the IPAC2016, Busan, Korea, 8–13 May 2016; pp. 947–950. [Google Scholar]
- Young, L.M.; Rybarcyk, L.J.; Schneider, J.D.; Schulze, M.E.; Smith, H.V. High Power Operations of LEDA. arXiv 2000, arXiv:physics/0008158. [Google Scholar]
- Ferdinand, R.; Beauvais, P.Y.; Duperrier, R.; France, A.; Gaiffier, J.; Lagniel, J.M.; Painchault, M.; Simoens, F.; Balleyguier, P. Status Report on the 5 MeV IPHI RFQ. arXiv 2000, arXiv:physics/0008145. [Google Scholar]
- Reiser, M. Theory and Design of Charged Particle Beams; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; et al. The Spallation Neutron Source Accelerator System Design. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2014, 763, 610–673. [Google Scholar] [CrossRef]
- Ramberger, S.; Alharbi, N.; Bourquin, P.; Cuvet, Y.; Gerigk, F.; Lombardi, A.M.; Sargsyan, E.; Vretenar, M.; Pisent, A. Drift Tube Linac Design and Prototyping for the CERN Linac4. In Proceedings of the LINAC08, Victoria, BC, Canada, 29 September–3 October 2008; pp. 184–186. [Google Scholar]
- Crandall, K.R.; Wangler, T.P.; Young, L.M.; Billen, J.H.; Neuschaefer, G.H.; Schrage, D.L. RFQ Design Codes; LA-UR-96-1836; Los. Alamos National Laboratory: Los Alamos, NM, USA, 2005. [Google Scholar]
- CST. Available online: www.cst.com (accessed on 1 August 2021).
- Buzio, M.; Golluccio, G.; Lombardi, A.; Mateo, F. Magnetic Qualification of Permanent Magnet Quadrupoles for CERN’s Linac4. IEEE Trans. Appl. Supercond. 2012, 22, 4004304. [Google Scholar] [CrossRef] [Green Version]
- Billen, J.H. Poisson Superfish; LA-UR-96-1834; Los. Alamos National Laboratory: Los Alamos, NM, USA, 1996. [Google Scholar]
- Chao, A.W.; Mess, K.H. (Eds.) Handbook of Accelerator Physics and Engineering; World scientific: Singapore, 2013. [Google Scholar]
- Uriot, D.; Pichoff, N. Status of TraceWin code. In Proceedings of the IPAC’15, Richmond, VA, USA, 3–8 May 2015; pp. 92–94. [Google Scholar]
- Stovall, J.; Crandall, K. Quadrupole Law and Steering Options in the Linac4 DTL; sLHC-Project-Note-0006; European Organization for Nuclear Research: Geneva, Switzerland, 2009. [Google Scholar]
- Gerigk, F. Status and Future Strategy for Advanced High Power Microwave Sources for Accelerators. In Proceedings of the IPAC2018, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 12–17. [Google Scholar]
- Thales. Available online: https://www.thalesgroup.lcom (accessed on 1 August 2021).
- Sun, L.; Shi, A.; Zhang, Z.; Shi, L.; Xu, X.; Li, C.; Wang, W.; Lu, L. Overview of RF System for C-ADS Injector II Radio Frequency Quadrupole. High Power Laser Part. Beams 2017, 29, 065107. [Google Scholar]
- Chun, M.H.; Park, K.H.; Yu, I.H.; Lee, Y.S.; Kim, D.S.; Seo, M.H.; Moon, Y.J.; Ok, J.W.; Won, M.S.; Hong, J.; et al. Design Study on a High Power RF Amplifier for the RFQ. In Proceedings of the IPAC’15, Richmond, VA, USA, 3–8 May 2015; pp. 3009–3011. [Google Scholar]
- Mendez, P.; Regidor, D.; Weber, M.; de la Morena, C.; Kirpitchev, I.; Garcia, A.; Marqueta, A.; Pereira, A.; Molla, J.; Ibarra, A.; et al. LIPAc RF Power System: Design and Main Practical Implementation Issues. Fusion Eng. Des. 2021, 165, 112226. [Google Scholar] [CrossRef]
- Lyles, J.; Archuletta, S.; Davis, J.; Rees, D.; Torrez, P.; Baca, D. Progress on New High Power RF System for LANSCE DTL. In Proceedings of the PAC07, Albuquerque, NM, USA, 25–29 June 2007; pp. 2382–2384. [Google Scholar]
- Lyles, J.; Barkley, W.; Davis, J.; Rees, D.; Sandoval, G. Installation and Operation of Replacement 201 MHz High Power RF System at LANSCE. In Proceedings of the IPAC’15, Richmond, VA, USA, 3–8 May 2015; pp. 3485–3488. [Google Scholar]
- CPI-Eimac. Available online: https://www.cpii.com (accessed on 1 August 2021).
- Canon. Available online: https://etd.canon/en/product/category/microwave/klystron.html (accessed on 1 August 2021).
- Langlois, M. SSA Using a Cavity Combiner, Elettra Synchrotron, Trieste, Italy. Available online: https://indico.cern.ch/event/276274/contributions/625698/attachments/501447/692514/ML_CWRF.pdf (accessed on 1 August 2021).
- De la Morena, C.; Regidor, D.; Iriarte, D.; Sierra, F.; Ugarte, E.; Dragaš, S.; Marini, P.; Molla, J.; Ibarra, A. First Validation Experiments of the Prototype Solid State RF System for IFMIF-DONES. Fusion Eng. Des. 2021, 168, 112396. [Google Scholar] [CrossRef]
- Gasper, M.; Garvey, T. Solid State Amplifier Development for the Swiss Light Source. In Proceedings of the IPAC’15, Richmond, VA, USA, 3–8 May 2015; pp. 3170–3172. [Google Scholar]
Parameters | 162.5 MHz RFQ | 325 MHz RFQ |
---|---|---|
Beam species | H+ | H+ |
Injection energy (keV/u) | 35 | 55 |
Output energy (MeV/u) | 2.5 | 3.0 |
Resonant frequency (MHz) | 162.5 | 325 |
Peak beam current (mA) | 20 | 40 |
Inter-vane voltage (kV) | 65 | 85 |
Cavity length (m) | 5.18 | 3.66 |
Averaged aperture radius (mm) | 5.664 | 3.575 |
Vane-tip radius (mm) | 4.250 | 2.680 |
Ratio | 0.75 | 0.75 |
Maximum surface field (MV/m) | 16.85 (1.24 Kilpatrick) | 32.53 (1.82 Kilpatrick) |
Input ) | 0.200 | 0.200 |
Output ) | 0.249 | 0.206 |
Output ) | 0.360 | 0.296 |
Transmission (%) | 99.6 | 98.2 |
Parameters | 162.5 MHz RFQ | 325 MHz RFQ |
---|---|---|
Quadrupole frequency Q0 (MHz) | 162.5 | 325 |
Half-width of RFQ inner wall (mm) | 176.90 | 101.66 |
Dipole mode frequency D0 (MHz) | 157.5 | 314.4 |
Vane voltage (kV) | 65 | 85 |
Quality factor (unloaded) | 16,836 | 11,855 |
Profile area to perimeter ratio (mm) | 41.2 | 20.6 |
Specific shunt impedance (kΩ∙m) | 272.1 | 101.8 |
Power loss per unit length (kW/m) | 15.5 | 71.0 |
Beam power (kW) | 50 | 120 |
Estimated cavity power (kW) | 104.4 | 337.8 |
Estimated total power (kW) | 154.4 | 457.8 |
Max magnetic field (A/m) | 2148.1 | 5268.3 |
Parameters | 162.5 MHz DTL | 325 MHz DTL |
---|---|---|
Operating frequency (MHz) | 162.5 | 325 |
Input energy (MeV) | 2.5 | 3.0 |
Output energy (MeV) | 13.0 | 13.0 |
Peak current (mA) | 20 mA | 40 mA |
Accelerating gradient (MV/m) | 1.10 → 1.75 | 2.85 |
Synchronous phase (degree) | −30° → −26° | −30° → −25° |
Kilpatrick limit | 1.6 | 1.6 |
Tank length (m) | 8.49 | 4.47 |
Tank diameter (cm) | 102 | 56 |
Drift tube diameter (cm) | 15 | 9 |
Bore radius (cm) | 1.2 | 1.0 |
Focusing lattice | FODO | FODO |
PMQ Length (mm) | 80 | 40 |
Quadrupole gradient (T/m) | 18.4 → 14.6 | 62.8 → 43.7 |
Cell number | 40 | 40 |
Copper power (kW) | 380.3 | 520.3 |
Beam power (kW) | 210 | 400 |
Averaged ZT2 (MΩ/m) | 44.4 | 55.5 |
Quality factor | 65598 | 53102 |
Estimated total power (kW) | 590.3 | 920.3 |
Transmission (%) | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Marchand, C.; Piquet, O.; Desmons, M. Two Design Options for Compact Linear Accelerators for High Flux Neutron Source. Appl. Sci. 2022, 12, 386. https://doi.org/10.3390/app12010386
Zhu X, Marchand C, Piquet O, Desmons M. Two Design Options for Compact Linear Accelerators for High Flux Neutron Source. Applied Sciences. 2022; 12(1):386. https://doi.org/10.3390/app12010386
Chicago/Turabian StyleZhu, Xiaowen, Claude Marchand, Olivier Piquet, and Michel Desmons. 2022. "Two Design Options for Compact Linear Accelerators for High Flux Neutron Source" Applied Sciences 12, no. 1: 386. https://doi.org/10.3390/app12010386
APA StyleZhu, X., Marchand, C., Piquet, O., & Desmons, M. (2022). Two Design Options for Compact Linear Accelerators for High Flux Neutron Source. Applied Sciences, 12(1), 386. https://doi.org/10.3390/app12010386