Rotation Invariant Parallel Signal Processing Using a Diffractive Phase Element for Image Compression
Abstract
:1. Introduction
- Compression is performed in a way that the rotated images give the same compressed data.
- In contrast to CHC filters, rotation invariance is ensured without any significant energy loss.
- By maintaining rotation invariance, the image compression technique allows parallel data processing.
- The proposed method might be used to further add geometrical invariance, such as scale invariance, given that during the compressing task a scale factor can be easily included by means of the diffractive compressing element.
2. Related Works
3. Analysis
4. Optical Implementation
5. Extensions of the Architecture
5.1. Parallel Pattern Recognition
5.2. Parallel Pattern Classification
6. Results
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gualdron, O.; Arsenault, H. Optimum rotation-invariant filter for disjoint-noise scenes. Appl. Opt. 1996, 35, 2507–2513. [Google Scholar] [CrossRef] [PubMed]
- Salas, R.R.; Dokladal, P.; Dokladalova, E. Rotation Invariant Networks for Image Classification for HPC and Embedded Systems. Electronics 2021, 10, 139. [Google Scholar] [CrossRef]
- Jabra, B.M.; Ammar, A.; Koubaa, A.; Cheikhrouhou, O.; Hamam, H. AI-based Pilgrim Detection using Convolutional Neural Networks. In Proceedings of the 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 2–5 September 2020. [Google Scholar] [CrossRef]
- Stark, H. Applications of Optical Fourier Transforms; Academic New York: New York, NY, USA, 1982; pp. 167–170. [Google Scholar]
- George, N.; Wang, S.; Venable, D.L. Optical pattern recognition. In Proceedings of the 1989 International Congress On Optical Science And Engineering, Paris, France, 24–28 April 1989; Volume 1134. [Google Scholar] [CrossRef]
- Singh, B.; Davis, L.S. An Analysis of Scale Invariance in Object Detection-SNIP. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3578–3587. Available online: https://arxiv.org/pdf/1711.08189.pdf (accessed on 20 December 2021).
- Hsu, Y.N.; Arsenault, H. Optical pattern recognition using Circular harmonic expansion. Appl. Opt. 1982, 21, 4016–4019. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, L.Y.; Sheng, Y.; Arsenault, H. Circular harmonic covariance filters for rotation invariant object recognition and discrimination. Opt. Commun. 1991, 85, 299–305. [Google Scholar] [CrossRef]
- Rosen, J.; Shamir, J. Circular harmonic phase filters for efficient rotation-invariant pattern recognition. Appl. Opt. 1988, 27, 2895–2899. [Google Scholar] [CrossRef] [PubMed]
- Gualdron, O.; Arsenault, H. Phase-derived circular harmonic filter. Opt. Commun. 1993, 1004, 32–34. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; MacGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Hamam, H.; de la Tocnaye, J.L.d.B. Programmable Joint Fractional Talbot Computer Generated Holograms. J. Opt. Soc. Am. A 1995, 12, 314–324. [Google Scholar] [CrossRef]
- Lesem, L.B.; Hirsch, P.M.; Jordan, J.A. The kinoform: A new wavefront reconstruction device. IBM J. Res. Develop. 1969, 13, 150–155. [Google Scholar] [CrossRef]
- Asselin, D.; Arsenault, H.H.; Prévost, D. Optical circular sampling system for translation and rotation invariant pattern recognition. Opt. Commun. 1994, 110, 507–513. [Google Scholar] [CrossRef]
- Hamam, H. Digital holography-based steganography. Opt. Lett. 2010, 35, 4175–4177. [Google Scholar] [CrossRef] [PubMed]
- de la Tocnaye, J.L.d.B.; Hamam, H.; Moignard, R. Light Diffraction Device Using Reconfigurable Spatial Light Modulators and the Fractional Talbot Effect. US Patent US5617227, 1 April 1997. [Google Scholar]
- Horner, J.L. Light utilization in optical correlators. Appl. Opt. 1982, 21, 4511–4514. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Davis, J.A.; Gutierrez, B.K.; Sánchez-López, M.; Cottrell, D.M. A new method for obtaining higher-order optical correlation/convolution using a spatial light modulator with extended phase modulation. In Proceedings of the Optics and Photonics for Information Processing XV, San Diego, CA, USA, 1–5 August 2021; Volume 1184104. [Google Scholar] [CrossRef]
- Hamam, H. Hartley holograms. Appl. Opt. 1996, 35, 5286–5292. [Google Scholar] [CrossRef] [PubMed]
- Hamam, H. Design of Talbot array illuminators. Opt. Commun. 1996, 131, 359–370. [Google Scholar] [CrossRef]
- Hamam, H.; Arsenault, H.H. Fresnel transform based correlator. Appl. Opt. 1997, 36, 7408–7414. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamam, H. Rotation Invariant Parallel Signal Processing Using a Diffractive Phase Element for Image Compression. Appl. Sci. 2022, 12, 439. https://doi.org/10.3390/app12010439
Hamam H. Rotation Invariant Parallel Signal Processing Using a Diffractive Phase Element for Image Compression. Applied Sciences. 2022; 12(1):439. https://doi.org/10.3390/app12010439
Chicago/Turabian StyleHamam, Habib. 2022. "Rotation Invariant Parallel Signal Processing Using a Diffractive Phase Element for Image Compression" Applied Sciences 12, no. 1: 439. https://doi.org/10.3390/app12010439
APA StyleHamam, H. (2022). Rotation Invariant Parallel Signal Processing Using a Diffractive Phase Element for Image Compression. Applied Sciences, 12(1), 439. https://doi.org/10.3390/app12010439