Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. EO Isolation by Distillation Methods
2.3. EO Composition Analysis
2.3.1. Gas Chromatography (GC)
2.3.2. Gas Chromatography–Mass Spectrometry (GC–MS)
2.3.3. Carbon-13 Nuclear Magnetic Resonance (13C NMR)
3. Results and Discussion
3.1. Extraction, Color, and Yield of C. japonica Leaf EO
3.1.1. Effects of the Distillation Method on the Color and Yield of the Investigated Leaf EO Samples (EO–HD and EO–WSD)
3.1.2. Comparison to Previous Studies on C. japonica Leaf EO Isolated by HD
3.2. Chemical Composition of EOs
3.2.1. Effects of the Distillation Method on the Chemical Composition of the Investigated Leaf EO Samples (EO–HD and EO–WSD)
3.2.2. Comparison to Previous Reports on C. japonica Leaf EO Isolated by SD
3.2.3. Comparison to Previous Studies on C. japonica Leaf EO Isolated by HD
3.3. Previous Studies on the Bioactivity of the Main Components of Azorean C. japonica Leaf EO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Xie, Y.; Huang, Q.; Yang, F.; Lei, C. Comparative analysis of essential oil components of two Cryptomeria species from China. Ind. Crops Prod. 2011, 34, 1226–1230. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Stevanovic, Z.D.; Sieniawska, E.; Glowniak, K.; Obradovic, N.; Pajic-Lijakovic, I. Natural macromolecules as carriers for essential oils: From extraction to biomedical application. Front. Bioeng. Biotechnol. 2020, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res. 2004, 18, 435–448. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020, 75, 495–504. [Google Scholar] [CrossRef]
- Babu, K.G.D.; Kaul, V.K. Variation in essential oil composition of rose-scented geranium (Pelargonium sp.) distilled by different distillation techniques. Flavour Fragr. J. 2005, 20, 222–231. [Google Scholar] [CrossRef]
- Mahanta, B.P.; Bora, P.K.; Kemprai, P.; Borah, G.; Lal, M.; Haldar, S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res. Int. 2021, 145, 110404. [Google Scholar] [CrossRef]
- Moiteiro, C.; Esteves, T.; Ramalho, L.; Rojas, R.; Alvarez, S.; Zacchino, S.; Bragança, H. Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat. Prod. Commun. 2013, 8, 1785–1790. [Google Scholar] [CrossRef] [Green Version]
- Hosni, K.; Hassen, I.; M’Rabet, Y.; Casabianca, H. Biochemical response of Cupressus sempervirens to cement dust: Yields and chemical composition of its essential oil. Arab. J. Chem. 2019, 12, 1308–1314. [Google Scholar] [CrossRef] [Green Version]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural Monoterpenes: Much more than only a scent—Review. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef]
- Aharoni, A.; Jongsma, M.A.; Boowmeester, H.J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 2005, 10, 594–602. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet. Sci. 2013, 35, 484–490. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Otto, A.; Oros, D.R.; Kusumoto, N. Terpenoids of the swamp cypress subfamily (Taxodioideae), Cupressaceae, an overview by GC-MS. Molecules 2019, 24, 3036. [Google Scholar] [CrossRef] [Green Version]
- Satyal, P.; Setzer, W. Chemical composition of Cryptomeria japonica leaf oil from Nepal. Am. J. Essent. Oil Nat. Prod. 2015, 3, 7–10. [Google Scholar]
- Yatagai, M.; Sato, T. Terpenes of leaf oils from conifers. Biochem. Syst. Ecol. 1986, 14, 469–478. [Google Scholar] [CrossRef]
- Mizushina, Y.; Kuriyama, I. Cedar (Cryptomeria japonica) Oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2015; pp. 317–323. [Google Scholar]
- Cheng, S.S.; Lin, H.Y.; Chang, S.T. Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J. Agric. Food Chem. 2005, 53, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Pustahija, F.; Subašić, M.; Bašić, N. Phenolic content in the needles of Cryptomeria japonica (Thunb. ex L. f.) D. Don, Cupressocyparis × leylandii (A.B. Jacks. & Dallim.) Dallim. “Castlewellan Gold” and Sequoiadendron giganteum (Lindl.) J. Buchholz. Works Fac. For. 2014, 2, 41–51. [Google Scholar]
- Shieh, B.; Iizuka, Y.; Matsubara, Y. Monoterpenoid and sesquiterpenoid constituents of the essential oil of sugi (Cryptomeria japonica D. Don.). Agric. Biol. Chem. 1981, 45, 1493–1495. [Google Scholar] [CrossRef]
- Cheng, W.W.; Lin, C.T.; Chu, F.H.; Chang, S.T.; Wang, S.Y. Neuropharmacological activities of phytoncide released from Cryptomeria japonica. J. Wood Sci. 2009, 55, 27–31. [Google Scholar] [CrossRef]
- Cha, J.D.; Jeong, M.R.; Jeong, S.I.; Moon, S.E.; Kil, B.S.; Yun, S.I.; Lee, K.Y.; Song, Y.H. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica. Phytother. Res. 2007, 21, 295–299. [Google Scholar] [CrossRef]
- Yoon, W.J.; Kim, S.S.; Oh, T.H.; Lee, N.H.; Hyun, C.G. Cryptomeria japonica essential oil inhibits the growth of drug-resistant skin pathogens and LPS-induced nitric oxide and pro-inflammatory cytokine production. Pol. J. Microbiol. 2009, 58, 61–68. [Google Scholar]
- Geong-Ho, L.; Lee, B.K.; Kim, J.H.; Lee, S.H.; Hong, S.K. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 2009, 19, 391–396. [Google Scholar]
- Oh, H.J.; Ahn, H.M.; So, K.H.; Kim, S.S.; Yun, P.Y.; Jeon, G.L.; Riu, K.Z. Chemical and antimicrobial properties of essential oils from three coniferous trees Abies koreana, Cryptomeria japonica, and Torreya nucifera. Appl. Biol. Chem. 2007, 50, 164–169. [Google Scholar]
- Nakagawa, T.; Zhu, Q.; Ishikawa, H.; Ohnuki, K.; Kakino, K.; Horiuchi, N.; Shinotsuka, H.; Naito, T.; Matsumoto, T.; Minamisawa, N.; et al. Multiple uses of essential oil and by-products from various parts of the Yakushima native cedar (Cryptomeria Japonica). J. Wood Chem. Technol. 2016, 36, 42–55. [Google Scholar] [CrossRef]
- Misawa, M.; Kizawa, M. Antitussive effects of several volatile oils, especially of cedar leaf oil in guinea pig. Pharmacometrics 1990, 39, 81–93. [Google Scholar]
- Matsunaga, T.; Hasegawa, C.; Kawasuji, T.; Suzuki, H.; Saito, H.; Sagioka, T.; Takahashi, R.; Tsukamoto, H.; Morikawa, T.; Akiyama, T. Isolation of the antiulcer compound in essential oil from the leaves of Cryptomeria japonica. Biol. Pharm. Bull. 2000, 23, 595–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, J.D.; Kim, J.Y. Essential oil from Cryptomeria japonica induces apoptosis in human oral epidermoid carcinoma cells via mitochondrial stress and activation of caspases. Molecules 2012, 17, 3890–3901. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, E.; Tsunetsugu, Y.; Ohira, T.; Sugiyama, M. Essential oil of Japanese cedar (Cryptomeria japonica) wood increases salivary dehydroepiandrosterone sulfate levels after monotonous work. Int. J. Environ. Res. Public Health 2017, 14, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.S.; Lin, C.Y.; Chung, M.J.; Chang, S.T. Chemical composition and antitermitic activity against Coptotermes formosanus Shiraki of Cryptomeria japonica leaf essential oil. Chem. Biodivers. 2012, 9, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lai, W.C.; Chu, F.H.; Lin, C.T.; Shen, S.Y.; Chang, S.T. Essential oil from the leaves of Cryptomeria japonica acts as a silverfish (Lepisma saccharina) repellent and insecticide. J. Wood Sci. 2006, 52, 522–526. [Google Scholar] [CrossRef]
- Mdoe, F.P.; Cheng, S.S.; Lyaruu, L.; Nkwengulila, G.; Chang, S.T.; Kweka, E.J. Larvicidal efficacy of Cryptomeria japonica leaf essential oils against Anopheles gambiae. Parasit. Vectors 2014, 7, 426. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.S.; Chua, M.T.; Chang, E.H.; Huang, C.G.; Chen, W.J.; Chang, S.T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 2009, 100, 465–470. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef]
- Gu, H.J.; Cheng, S.S.; Lin, C.Y.; Huang, C.G.; Chen, W.J.; Chang, S.T. Repellency of essential oils of Cryptomeria japonica (Pinaceae) against adults of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae). J. Agric. Food Chem. 2009, 57, 11127–11133. [Google Scholar] [CrossRef]
- Abreu, P.M.R. Contribute of Cryptomeria japonica for Carbon Sequestration in the Azores. Master’s Thesis, University of Aveiro, Aveiro, Portugal, 2011. [Google Scholar]
- Council of Europe. European directorate for the quality of medicines. In European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010; p. 241. [Google Scholar]
- Masango, P. Cleaner production of essential oils by steam distillation. J. Cleaner Prod. 2005, 13, 833–839. [Google Scholar] [CrossRef]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva, Switzerland, 1985.
- Salgueiro, L.R.; Vila, R.; Tomi, F.; Figueiredo, A.C.; Barroso, J.G.; Cañigueral, S.; Casanova, J.; Cunha, A.P.; Adzet, T. Variability of essential oils of Thymus caespititius from Portugal. Phytochemistry 1997, 45, 307–311. [Google Scholar] [CrossRef]
- Pedro, L.G.; Santos, P.A.; Silva, J.A.; Figueiredo, A.C.; Barroso, J.C.; Deans, S.G.; Looman, A.; Scheffer, J.J.C. Essential oils from Azorean Laurus azorica. Phytochemistry 2001, 57, 245–250. [Google Scholar] [CrossRef]
- Grosso, C.; Coelho, J.A.; Urieta, J.S.; Palavra, A.M.F.; Barroso, J.G. Herbicidal activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated by hydrodistillation and supercritical fluid extraction. J. Agric. Food Chem. 2010, 58, 11007–11013. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Fontinha, S.S.; Looman, A.; Scheffer, J.J.C. Composition of the essential oil of Monizia edulis Lowe, an endemic species of the Madeira Archipelago. Flavour Fragr. J. 1997, 12, 29–31. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Salgueiro, L.; Barroso, J.G.; Figueiredo, A.C.; Pedro, L.G.; Fontinha, S.S.; Bighelli, A.; Casanova, J.; Looman, A.; Scheffer, J.J.C. Composition of the essential oil of Juniperus cedrus Webb & Berth. grown on Madeira. Flavour Fragr. J. 2002, 17, 111–114. [Google Scholar]
- Garcia, G.; Garcia, A.; Gibernau, M.; Bighelli, A.; Tomi, F. Chemical compositions of essential oils of five introduced conifers in Corsica. Nat. Prod. Res. 2017, 31, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, N.; Shibutani, S. Evaporation of volatiles from essential oils of Japanese conifers enhances antifungal activity. J. Essent. Oil Res. 2015, 27, 380–394. [Google Scholar] [CrossRef]
- Babu, G.D.K.; Singh, B. Characteristics variation of lavender oil produced by different hydrodistillation techniques. In Comprehensive Bioactive Natural Products—Quality Control & Standardization; Gupta, V.K., Taneja, S.C., Gupta, B.D., Eds.; Studium Press LLC: New Delhi, India, 2010; Volume 8, pp. 122–136. [Google Scholar]
- Vernin, G.; Metzger, J.; Mondon, J.P.; Pieribattesti, J.C. GC/MS analysis of the leaf oil of Cryptomeria japonica D. Don from Reunion Island. J. Ess. Oil. Res. 1991, 3, 197–207. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Mazzara, E.; Torresi, J.; Cianfaglione, K.; Benelli, G.; Canale, A. Prolonged sublethal effects of essential oils from non-wood parts of nine conifers on key insect pests and vectors. Ind. Crops Prod. 2021, 168, 113590. [Google Scholar] [CrossRef]
- Williams, C.J. Medicinal Plants in Australia—Gums, Resins, Tannin and Essential Oils, 1st ed.; Rosenberg Publishing: Kenthurst, Australia, 2011; Volume 2, p. 315. [Google Scholar]
- Hanuš, L.O.; Hod, Y. Terpenes/terpenoids in Cannabis: Are they important? Med. Cannabis Cannabinoids 2020, 3, 25–60. [Google Scholar] [CrossRef] [PubMed]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In Medicinal plants: From Farm to Pharmacy; Joshee, N., Dhekney, S.A., Parajuli, P., Eds.; Springer: New York, NY, USA, 2019; pp. 333–360. [Google Scholar]
- Noriega, P. Terpenes. In Essential oils: Bioactivity and Applications; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L D Jayaweera, S.; A Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α- and β-pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A review of the potential use of pinene and linalool as terpene-based medicines for brain health: Discovering novel therapeutics in the flavours and fragrances of Cannabis. Front. Psychiatry 2021, 12, 583211. [Google Scholar] [CrossRef]
- Myszka, K.; Tomaś, N.; Wolko, Ł.; Szwengiel, A.; Grygier, A.; Nuc, K.; Majcher, M. In situ approaches show the limitation of the spoilage potential of Juniperus phoenicea L. essential oil against cold-tolerant Pseudomonas fluorescens KM24. Appl. Microbiol. Biotechnol. 2021, 105, 4255–4268. [Google Scholar] [CrossRef]
- Martina, A.; Christian, S. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar]
- Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric acid modified clinoptilolite as a solid green catalyst for solvent-free α-pinene isomerization process. Microporous Mesoporous Mater. 2021, 324, 111266. [Google Scholar] [CrossRef]
- Wróblewska, A.; Tołpa, J.; Kłosin, D.; Miądlicki, P.; Koren, Z.C.; Michalkiewicz, B. The application of TS-1 materials with different titanium contents as catalysts for the autoxidation of α-pinene. Microporous Mesoporous Mater. 2020, 305, 110384. [Google Scholar] [CrossRef]
- Yamashita, Y.; Hashimoto, N.; Kusumoto, N.; Saijo, H.; Goto, I.; Kobayashi, H.; Kurihara, Y.; Takahashi, K.; Ashitani, T. Acaricidal activity of components of Cryptomeria japonica against spider mites. J. Wood Sci. 2015, 61, 60–64. [Google Scholar] [CrossRef]
Distillation Method | Essential Oil | |
---|---|---|
Yield (%, v/w) 1 | Color | |
Hydrodistillation (HD) | 1.21 ± 0.03 a | Pale yellow |
Water-steam distillation (WSD) | 0.45 ± 0.01 b | Colorless |
C. japonica Origin | Pant Age (years) | Harvested Time | Leaves Status | EO Isolated by HD 2 Using a Clevenger-Type Apparatus | Ref. | ||
---|---|---|---|---|---|---|---|
DT | Yield | Color | |||||
São Miguel Island (Azores) 1 | 30–40 | Nov. 2016 | fresh | 3 h | 1.21% (v/w) | pale yellow | - |
Faial Island (Azores) | – | July 2007 | dried | 4 h | 0.5–0.8% (w/w; FW) | – | [11] |
Corsica Island (France) | – | – | – | – | 0.61% | – | [48] |
Yakushima Island (Japan) | 30 | Nov. 2013 | fresh | 2 h | 2.2 mL/kg | – | [28] |
Hefei (China) | – | May 2009 | fresh | 4 h | 1.15% (w/w) | pale yellow | [1] |
Bagmati Zone (Nepal) | – | May 2011 | dried | 4 h | 0.5% (w/w) | pale yellow | [17] |
Jeju Island (South Korea) | – | 2010 | fresh | 24 h | 4.7% (w/w; DW) | – | [15] |
– | – | 0.6% (v/w) | [25] | ||||
June 2007 | 6 h | 0.84% (v/w) | [27] | ||||
Nantou County (Central Taiwan) | 58 | June 2001 | – | 6 h | 2.37% (w/w; DW) | – | [36] |
42 | 1.91% (w/w; DW) | ||||||
26 | 2.19% (w/w; DW) | ||||||
Nantou County (Central Taiwan) | 28 | August 2009 | fresh | 6 h | 1.60% (w/w; DW) | – | [33] |
Components | RI | Relative Content (%) | IP 3 | ||
---|---|---|---|---|---|
OE–HD 1 | OE–WSD 1 | OE–SD 2 | |||
Monoterpene Hydrocarbons (MH) | |||||
Tricyclene | 921 | 0.5 | 0.6 | 0.6 | c, d |
α-Thujene | 924 | 2.1 | 2.8 | 1.6 | c, d |
α-Pinene | 930 | 34.5 | 46.4 | 39.3 | a, c, d |
Camphene | 938 | 3.5 | 3.8 | 3.7 | c, d, e |
Sabinene | 958 | 20.2 | 11.6 | 19.3 | a, c, d, e |
β-Pinene | 963 | t | 1.7 | 2.1 | a, c, d, e |
β-Myrcene | 975 | 5.9 | 5.8 | 5.7 | a, c, d, e |
α-Phellandrene | 995 | t | 0.1 | 0.1 | c, d, e |
δ-3-Carene | 1000 | 1.1 | 1.1 | 2.6 | a, e |
α-Terpinene | 1002 | 1.0 | 1.1 | 1.2 | a, c, d, e |
p-Cymene | 1003 | 0.7 | 4.4 | 0.3 | a, c, d, e |
β-Phellandrene | 1005 | 0.4 | 0.7 | 0.8 | c, e |
Limonene | 1009 | 1.4 | 3.2 | 8.3 | a, c, d, e |
γ-Terpinene | 1035 | 1.1 | 2.6 | 1.9 | a, c, d, e |
Terpinolene | 1064 | 0.4 | 0.8 | 1.0 | a, c, e |
Oxygenated Monoterpenes (OCM) | |||||
trans-2-p-Menthen-1-ol | 1099 | - | - | 0.1 | e |
Borneol | 1134 | - | - | 0.1 | a, c |
Terpinen-4-ol | 1148 | 1.8 | 5.4 | 2.0 | a, c, d, e |
α-Terpineol | 1186 | - | 0.2 | - | a, c, d, e |
Linalyl acetate | 1245 | - | - | 0.1 | b |
Bornyl acetate | 1265 | 1.3 | 1.6 | 1.7 | b, d |
α-Terpenyl acetate | 1334 | - | - | 0.1 | b, c, d |
Sesquiterpene Hydrocarbons (SH) | |||||
β-Elemene | 1388 | - | - | 0.2 | c, d |
β-Caryophyllene | 1414 | - | - | 0.2 | c, f |
γ- Muurolene | 1469 | - | - | 0.7 | c |
α-Muurolene | 1494 | - | 0.2 | 0.3 | c |
γ-Cadinene | 1500 | - | 0.2 | 0.4 | c, d |
trans-Calamenene | 1505 | - | - | t | c |
δ-Cadinene | 1505 | 1.6 | 1.2 | 1.1 | c, d |
Oxygenated Sesquiterpenes (OCS) | |||||
Elemol | 1530 | 10.4 | 1.5 | 0.8 | c |
γ-Eudesmol | 1609 | 1.2 | 0.2 | - | g |
τ-Cadinol | 1616 | 0.2 | 0.1 | 0.2 | c, d |
τ-Muurolol | 1616 | 0.3 | 0.1 | - | g |
β-Eudesmol | 1620 | 1.6 | 0.2 | - | c |
α-Eudesmol | 1634 | 3.4 | 0.3 | - | c |
Diterpene Hydrocarbons (DH) | |||||
Sandaracopimara-8(14),15-diene | 1956 | 0.1 | - | t | g |
Phyllocladene | 2006 | 2.9 | 0.2 | 0.9 | a |
Identified components (%) | 97.6 | 98.1 | 97.4 |
Main Components | Cryptomeria japonica Origin | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
São Miguel Island, Azores 2 | Corsica Island [48] | Reunion Island [51] | Japan [28] | China [1] 3 | Nepal [17] | Korea | Taiwan | |||||
[15] | [25] | [27] | [36] | [33] | [34] | |||||||
MH group | ||||||||||||
α-Thujene | 2.1 | 1.4 | - | 0.9 | 0.5 | 0.3 | 1.2 | - | 0.6 | 0.9–1.3 | 0.5 | 0.8 |
α-Pinene | 34.5 | 19.1 | 16.7 | 13.1 | 8.0 | 4.2 | 9.8 | 3.5 | 3.0 | 4.4–4.9 | 8.5 | 5.6 |
Camphene | 3.5 | 3.1 | 2.4 | 3.6 | 0.8 | 0.03 | - | 0.5 | 0.6 | 0.5 | 3.4 | 1.0 |
Sabinene | 20.2 | 19.6 | 8.5 | 2.7 | - | 4.3 | 5.5 | 8.9 | 5.1 | 6.8–10.8 | 3.8 | 9.4 |
β-Pinene | t | 1.2 | 0.7 | 8.2 | 0.7 | 0.1 | - | - | - | - | - | 0.2 |
β-Myrcene | 5.9 | 4.3 | 2.9 | 3.9 | - | 0.6 | 1.6 | 1.2 | 1.3 | 1.0–1.2 | 1.6 | 2.6 |
δ-3-Carene | 1.1 | 0.4 | 2.5 | 0.7 | 0.5 | 0.1 | 3.1 | 1.7 | 0.6 | 0.8–1.2 | 1.5 | 9.7 |
α-Terpinene | 1.0 | 2.0 | 2.0 | 0.8 | 0.1 | 0.5 | 3.0 | 1.0 | 1.4 | 0.8–1.2 | 0.9 | 1.9 |
p-Cymene | 0.7 | 0.2 | 1.3 | - | 0.1 | 0.3 | - | - | - | 1.9–2.7 | - | 0.2 |
β-Phellandrene | 0.4 | 0.6 | 0.7 | - | 6.0 | - | - | - | - | - | - | - |
Limonene | 1.4 | 9.0 | 2.2 | 5.1 | 1.6 | 1.1 | 2.0 | 1.2 | 1.9 | 2.0–2.4 | 6.8 | 5.3 |
γ-Terpinene | 1.1 | 3.2 | 3.5 | 1.5 | 0.6 | 1.2 | 2.0 | 1.9 | 2.2 | 1.8–2.4 | 1.4 | 3.1 |
Terpinolene | 0.4 | 1.3 | 1.0 | 0.8 | 0.3 | 0.5 | 1.1 | 1.1 | 0.9 | 0.8–1.0 | 0.6 | 1.6 |
OCM group | ||||||||||||
Terpinen-4-ol | 1.8 | 6.4 | 5.9 | 1.4 | 0.7 | 0.9 | 5.7 | 4.1 | 4.6 | 6.2–8.3 | 2.0 | 9.1 |
α-Terpineol | - | 0.3 | 0.5 | 0.1 | - | - | 13.4 | - | 0.3 | 0.3–0.5 | 0.2 | 0.5 |
Bornyl acetate | 1.3 | 2.2 | 1.6 | 2.2 | 0.5 | 0.1 | 0.6 | - | 0.7 | 0.9–1.3 | 3.8 | 0.8 |
SH group | ||||||||||||
β-Elemene | - | 0.1 | 0.1 | 0.5 | 5.9 | 0.03 | - | - | 0.2 | - | - | - |
Widdrene | - | - | - | - | - | - | 2.6 | - | - | - | - | |
β-Caryophyllene | - | tr | 0.2 | 2.5 | 0.3 | - | - | - | 0.1 | - | - | - |
Thujopsene | - | - | - | 8.8 | - | 0.7 | - | - | - | - | - | |
δ-Cadinene | 1.6 | 0.5 | 0.5 | 1.9 | 1.7 | 1.5 | 0.6 | 3.3 | 1.8 | 0.8–1.1 | 0.4 | 0.5 |
OCS group | ||||||||||||
Elemol | 10.4 | 10.7 | 11.8 | 2.9 | 0.5 | 20.4 | 10.9 | 10.9 | 6.9 | 18.3–19.1 | 18.3 | 18.2 |
α-Elemol | - | - | - | - | 20.1 | - | - | - | - | - | - | - |
Cedrol | - | - | 0.2 | 3.3 | - | - | 1.0 | - | 0.0–0.6 | - | ||
γ-Eudesmol | 1.2 | 1.3 | 0.1 | 1.2 | 4.1 | 7.0 | 10.6 | 9.4 | 19.0 | 6.3–7.2 | 8.2 | - |
β-Eudesmol | 1.6 | 1.5 | 3.4 | - | 5.0 | 5.0 | - | 5.1 | 6.0 | 11.5–11.8 | 4.8 | 5.7 |
α-Eudesmol | 3.4 | 1.6 | 2.9 | 2.3 | 5.6 | 4.7 | 12.2 | 5.3 | 7.9 | 6.5 | - | |
α-Cadinol | - | - | 0.4 | - | - | 2.3 | - | 2.2 | - | - | - | - |
Liriodenine | - | - | - | - | 2.7 | - | - | - | - | - | - | - |
Lendene | - | - | - | - | - | - | - | 3.8 | - | - | - | - |
DH group | ||||||||||||
Phyllocladene | 2.9 | - | - | - | - | - | - | - | - | - | - | - |
Kaur-16-ene | - | - | - | - | 14.8 | 42.1 | - | - | - | 19.5–20.7 | 23.3 | 11.6 |
Kaurene | - | 6.5 | 10.0 | 9.2 | 1.5 | - | 19.4 | 17.2 | 26.3 | - | - | - |
Comp. ident. | 26 | 45 | 80 | 73 | 57 | 32 | 30 | 24 | 38 | 29–30 | 22 | 22 |
GC column | DB1 | BP1 | WAX52 | DB5 | HP5 | HP5 | HP5 | DB1 | HP5 | DB5 |
Component | Biological Activity | Ref. |
---|---|---|
α-Pinene | Flavoring and Fragrance; Antiseptic and Herbicidal Properties | [53] |
Analgesic, Anti-AChE, Antiapoptotic, Antibacterial, Anticancer, Anticoagulant, Anticonvulsant, Antidepressant, Antifungal, Anti-Inflammatory, Anti-Leishmania, Antimalarial, Antimetastatic, Antioxidant, Anxiolytic, Bronchodilating, Cytogenetic, Cytoprotective, Gastroprotective, Neuroprotective, Insecticidal, Larvicidal, and Nematicidal Properties; Cognitive Impairment and Insomnia Effects | [13,57,58,60] | |
Substrate for Chemical Reactions | [61,62] | |
Mosquito Repellency Effect; Anti-Quorum-Sensing Properties | [38,59] | |
Sabinene | Flavoring and Fragrance; Antiseptic and Anti-Quorum-Sensing Properties | [53,59] |
Anticancer, Anti-Inflammatory, and Antioxidant Properties | [31] | |
Antibacterial Properties (e.g., against several oral bacteria and Helicobacter pylori) | [24,53] | |
Antifungal, Anti-AChE, and Anti-BChE Properties; Skin Penetration Enhancer | [13] | |
Limonene | Flavoring and Fragrance; Antiseptic, Anti-AChE, Anti-Asthmatic, Antibacterial, Anticancer, Antidepressant, Antifungal, Anti-Inflammatory, Antimalarial, Antimutagenic, Antiproliferative, Antispasmodic, Antiviral, and Anxiolytic Properties; Detoxicant; Expectorant; Gastroprotective and Immunomodulatory Properties; Muscle Relaxant; Sedative | [53,54,55] |
Neuropharmacological Properties; Skin Penetration Enhancer | [13,23] | |
Insecticidal Properties; Mosquito Repellency Effect | [38,52] | |
β-Myrcene | Fragrance; Analgesic, Anti-Inflammatory, and Antipsychotic Properties; Sedative; Muscle Relaxant | [54] |
Antibacterial, Anticancer, Antifungal, and Antimalarial Properties | [55] | |
Anti-AChE and Antioxidant Properties | [13] | |
Larvicidal against Aedes aegypti and Aedes albopictus | [36] | |
p-Cymene | Anticancer, Antifungal, and Antioxidant Properties | [13,55] |
Neuroprotective Properties; Skin Penetration Enhancer | [13] | |
Larvicidal against A. aegypti and A. albopictus | [36] | |
Camphene | Anticancer, Antifungal, and Antioxidant Properties | [13,55] |
Anti-AChE and Cardioprotective Properties | [54] | |
Larvicidal against Helicoverpa armigera (cotton bollworm) | [52] | |
α-Thujene | Antifungal Properties | [13] |
δ-3-Carene | Antifungal Properties | [13] |
Larvicidal against A. aegypti and A. albopictus | [36] | |
Mosquito Repellency Effect | [38] | |
γ-Terpinene | Analgesic, Anticancer, Anti-Inflammatory, and Antimicrobial Properties | [54] |
Anti-AChE, Anti-BChE, and Antioxidant Properties | [13] | |
Larvicidal against A. aegypti and A. albopictus | [36] | |
Mosquito Repellency Effect | [38] | |
Terpinen-4-ol | Antiseptic, Antiallergic, Anti-Asthmatic, Antibacterial (e.g., against several oral bacteria), Anti-Inflammatory, Antitussive, and Expectorant Properties | [24,53] |
Anticancer and Antiulcer Properties | [30,31] | |
Antioxidant Properties; Relaxing Effects | [54] | |
Antifungal Properties; Skin Penetration Enhancer | [13] | |
Mosquito Repellency Effect | [38] | |
Elemol | Anticancer Properties | [54] |
Acaricidal against Tetranychus urticae and Tetranychus kanzawai | [63] | |
Antitermite Properties | [33] | |
Silverfish (Lepisma saccharina) Repellency Effect | [34] | |
α-Eudesmol | Antiangiogenic, Anticancer, Antifungal, and Antimicrobial Properties | [56] |
Phyllocladene | Antimicrobial Properties | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arruda, F.; Rosa, J.S.; Rodrigues, A.; Oliveira, L.; Lima, A.; Barroso, J.G.; Lima, E. Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis. Appl. Sci. 2022, 12, 452. https://doi.org/10.3390/app12010452
Arruda F, Rosa JS, Rodrigues A, Oliveira L, Lima A, Barroso JG, Lima E. Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis. Applied Sciences. 2022; 12(1):452. https://doi.org/10.3390/app12010452
Chicago/Turabian StyleArruda, Filipe, José S. Rosa, Ana Rodrigues, Luísa Oliveira, Ana Lima, José G. Barroso, and Elisabete Lima. 2022. "Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis" Applied Sciences 12, no. 1: 452. https://doi.org/10.3390/app12010452
APA StyleArruda, F., Rosa, J. S., Rodrigues, A., Oliveira, L., Lima, A., Barroso, J. G., & Lima, E. (2022). Essential Oil Variability of Azorean Cryptomeriajaponica Leaves under Different Distillation Methods, Part 1: Color, Yield and Chemical Composition Analysis. Applied Sciences, 12(1), 452. https://doi.org/10.3390/app12010452