Digital Holographic Microscopy as Identifier of Ultrafine Particles Emitted during Fused Deposition Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticle Samples Collection
2.2. Digital Holographic Microscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebler, M.; Uiterkamp, A.J.M.S.; Visser, C. A global sustainability perspective on 3D printing technologies. Energy Policy 2014, 74, 158–167. [Google Scholar] [CrossRef]
- Buranská, E.; Buranský, I.; Morovič, L.; Líška, K. Environment and Safety Impacts of Additive Manufacturing: A Review. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 2019, 27, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Heyer, S.; Ibbotson, S.; Salonitis, K.; Steingrímsson, J.G.; Thiede, S. Direct digital manufacturing: Definition, evolution, and sustainability implications. J. Clean. Prod. 2015, 107, 615–625. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 2013, 67, 1191–1203. [Google Scholar] [CrossRef]
- Petrick, I.J.; Simpson, T.W. 3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition. Res. Manag. 2013, 56, 12–16. [Google Scholar] [CrossRef]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horiz. 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Petrovic, V.; Gonzalez, J.V.H.; Ferrando, O.J.; Gordillo, J.D.; Puchades, J.R.B.; Griñan, L.P. Additive layered manufacturing: Sectors of industrial application shown through case studies. Int. J. Prod. Res. 2011, 49, 1061–1079. [Google Scholar] [CrossRef]
- Kafle, A.; Luis, E.; Silwal, R.; Pan, H.M.; Shrestha, P.L.; Bastola, A.K. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers 2021, 13, 3101. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, M.M.; Saravanan, A.K.; Lenin, A.H.; Leno, I.J.; Mayandi, K.; Ramalingam, P.S. A short review on 3D printing methods, process parameters and materials. Mater. Today Proc. 2021, 45, 6108–6114. [Google Scholar] [CrossRef]
- Jeon, H.; Park, J.; Kim, S.; Park, K.; Yoon, C. Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing. Indoor Air 2020, 30, 306–314. [Google Scholar] [CrossRef]
- Stephens, B.; Azimi, P.; el Orch, Z.; Ramos, T. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 2013, 79, 334–339. [Google Scholar] [CrossRef]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Chalupa, D.C.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 2004, 112, 879–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, H.; Wichmann, E.; Tuch, T.; Heinrich, J.; Heyder, J. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 1997, 155, 1376–1383. [Google Scholar] [CrossRef]
- Penttinen, P.; Timonen, K.L.; Tiittanen, P.; Mirme, A.; Ruuskanen, J.; Pekkanen, J. Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Respir. J. 2001, 17, 428–435. [Google Scholar] [CrossRef] [Green Version]
- von Klot, S.; Wölke, G.; Tuch, T.; Heinrich, J.; Dockery, D.W.; Schwartz, J.; Kreyling, W.G.; Wichmann, H.E.; Peters, A. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur. Respir. J. 2002, 20, 691–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of Inhaled Ultrafine Particles to the Brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Sioutas, C.; Malik, S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. Health Perspect. 2005, 113, 934–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sioutas, C.; Delfino, R.J.; Singh, M. Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research. Environ. Health Perspect. 2005, 113, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Stölzel, M.; Breitner, S.; Cyrys, J.; Pitz, M.; Wölke, G.; Kreyling, W.; Heinrich, J.; Wichmann, H.-E.; Peters, A. Daily mortality and particulate matter in different size classes in Erfurt, Germany. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al air liquide españa s.a. Ficha de Datos de Seguridad: Monóxido de Carbono. 2010. Available online: http://www.ebd.csic.es/lie/PDF/FDS%20CO%20(6).pdf (accessed on 13 November 2021).
- UNAM. Hoja de Seguridad XX Cianuro de Hidrógeno y Cianuros, UNAM. 2016. Available online: https://quimica.unam.mx/wp-content/uploads/2016/12/20cianuros.pdf (accessed on 13 November 2021).
- Ministerio para la Transición Ecológica y el Reto Demográfico, De Compuestos Orgánicos Volátiles, Ministerio para la Transición Ecológica y el Reto Demográfico. 2003. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/emisiones/act-emis/compuestos_organicos_volatiles.aspx (accessed on 13 November 2021).
- Wojtyła, S.; Klama, P.; Śpiewak, K.; Baran, T. 3D printer as a potential source of indoor air pollution. Int. J. Environ. Sci. Technol. 2020, 17, 207–218. [Google Scholar] [CrossRef]
- Kim, M.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar] [CrossRef] [Green Version]
- Furlong, C.; Pryputniewicz, R.J. Optoelectronic characterization of shape and deformation of MEMS accelerometers used in transportation applications. Opt. Eng. 2003, 42, 1223–1231. [Google Scholar] [CrossRef]
- Rappaz, B.; Marquet, P.; Cuche, E.; Emery, Y.; Depeursinge, C.; Magistretti, P.J. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 2005, 13, 9361–9373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León-Rodríguez, M.; Rodríguez-Vera, R.; Rayas, J.A.; Calixto, S. High topographical accuracy by optical shot noise reduction in digital holographic microscopy. J. Opt. Soc. Am. A 2012, 29, 498–506. [Google Scholar] [CrossRef]
- Goodman, J.W.; Lawrence, R.W. Digital Image Formation from Electronically Detected Holograms. Appl. Phys. Lett. 1967, 11, 77–79. [Google Scholar] [CrossRef]
- León-Rodríguez, M.; Rayas, J.A.; Cordero, R.R.; Martínez-García, A.; Martínez-Gonzalez, A.; Téllez-Quiñones, A.; Yañez-Contreras, P.; Medina-Cázares, O. Dual-plane slightly off-axis digital holography based on a single cube beam splitter. Appl. Opt. 2018, 57, 2727–2735. [Google Scholar] [CrossRef]
- Sánchez, J.R.; Martínez-García, A.; Rayas, J.A.; León-Rodríguez, M. LED source interferometer for microscopic fringe projection profilometry using a Gates’ interferometer configuration. Lasers Eng. 2022, 149, 106822. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Colomb, T.; Kühn, J.; Charrière, F.; Depeursinge, C.; Marquet, P.; Aspert, N. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt. Express 2006, 14, 4300–4306. [Google Scholar] [CrossRef]
- Shevchik-Shekera, A.; Zabudsky, V.; Golenkov, O.; Dvoretskii, S. Designing and manufacturing aspherical polystyrene lenses for the terahertz region. Semicond. Phys. Quantum Electron. Optoelectron. 2018, 21, 83–88. [Google Scholar] [CrossRef]
- Ashby, M.F.; Shercliff, H.; Cebon, D. Materials: Engineering, Science, Processing and Design; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Flores-Mijangos, J.; Beltrán-López, V. Far-infrared laser measurement of the refractive index of polypropylene. Appl. Opt. 2003, 42, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Rogulska, M.; Kultys, A.; Puszka, A. New thermoplastic poly (carbonate-urethane) s based on chain extenders with sulfur atoms. Chem. Pap. 2017, 71, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- BÜFA Thermoplastic Composites GmbH & Co. KG. Differences in Structure: The Properties of Plastic Types. 2019. Available online: https://thermoplasticcomposites.de/en/2019/12/03/differences-in-structure-the-properties-of-plastic-types/ (accessed on 13 November 2021).
- Stangl, J.; Holý, V.; Bauer, G. Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 2004, 76, 725–783. [Google Scholar] [CrossRef]
- El Radaf, I.M.; Hameed, T.A.; El Komy, G.M.; Dahy, T.M. Synthesis, structural, linear and nonlinear optical properties of chromium doped SnO2 thin films. Ceram. Int. 2019, 45, 3072–3080. [Google Scholar] [CrossRef]
- Unwin, J.; Coldwell, M.R.; Keen, C.; McAlinden, J.J. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics. Ann. Occup. Hyg. 2013, 57, 399–406. [Google Scholar]
- Executive Health and Safety, Controlling Fume during Plastics Processing. 2013. Available online: https://www.hse.gov.uk/pubns/ppis13.pdf (accessed on 13 November 2021).
Parameters | PLA |
---|---|
Layer height | 0.2 mm |
Initial layer height | 0.2 mm |
Infill density | 100% |
Infill pattern | Lines |
Printing temperature | 200 °C |
Build plate temperature | 60 °C |
Filament diameter | 1.75 mm |
Print speed | 50.0 mm/s |
Nozzle diameter | 0.4 mm |
Material | Refractive Index (nd) |
---|---|
ABS | 1.57 |
Carbon fiber | 1.62 |
HIPS | 1.561 |
Nylon | 1.72 |
PETG | 1.57 |
PLA | 1.465 |
PP | 1.495 |
TPU | 1.57 |
Material | Min. Film Height (nm) | Max. Film Height (nm) |
---|---|---|
PLA | 11.05 | 33.08 |
ABS | 21.38 | 96.72 |
PETG | 105.6 | 143 |
HIPS | 147.1 | 330.6 |
Nylon | 26.13 | 56.65 |
PP | 21.83 | 771.6 |
Carbon Fiber | 98.19 | 197.5 |
TPU | 9.704 | 141.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Espinosa, D.A.; León-Rodríguez, M.; Yañez-Contreras, P.; Miguel-Andrés, I.; Padilla-Medina, J.A.; Cruz-Bernal, A.; Ibarra-Torres, P. Digital Holographic Microscopy as Identifier of Ultrafine Particles Emitted during Fused Deposition Modelling. Appl. Sci. 2022, 12, 65. https://doi.org/10.3390/app12010065
García-Espinosa DA, León-Rodríguez M, Yañez-Contreras P, Miguel-Andrés I, Padilla-Medina JA, Cruz-Bernal A, Ibarra-Torres P. Digital Holographic Microscopy as Identifier of Ultrafine Particles Emitted during Fused Deposition Modelling. Applied Sciences. 2022; 12(1):65. https://doi.org/10.3390/app12010065
Chicago/Turabian StyleGarcía-Espinosa, Daniel Alberto, Miguel León-Rodríguez, Pedro Yañez-Contreras, Israel Miguel-Andrés, José Alfredo Padilla-Medina, Alejandra Cruz-Bernal, and Patricia Ibarra-Torres. 2022. "Digital Holographic Microscopy as Identifier of Ultrafine Particles Emitted during Fused Deposition Modelling" Applied Sciences 12, no. 1: 65. https://doi.org/10.3390/app12010065
APA StyleGarcía-Espinosa, D. A., León-Rodríguez, M., Yañez-Contreras, P., Miguel-Andrés, I., Padilla-Medina, J. A., Cruz-Bernal, A., & Ibarra-Torres, P. (2022). Digital Holographic Microscopy as Identifier of Ultrafine Particles Emitted during Fused Deposition Modelling. Applied Sciences, 12(1), 65. https://doi.org/10.3390/app12010065