Properties of Spatially Indirect Excitons in Nanowire Arrays
Abstract
:Featured Application
Abstract
1. Introduction
2. Results and Discussion
2.1. Binding Energy and Charge Distribution for SIEs
2.2. SIE Life Time
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Appendix A.1. CIE Binding Energy
Appendix A.2. Electron Tunnelling between the NWs
References
- Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C.M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lieber, C.M. Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks. Science 2001, 291, 851–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colinge, J.-P.; Lee, C.-W.; Afzalian, A.; Akhavan, N.D.; Yan, R.; Ferain, I.; Razavi, P.; O’Neill, B.; Blake, A.; White, M.; et al. Nanowire transistors without junctions. Nat. Nanotechnol. 2010, 5, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Mongillo, M.; Spathis, P.; Katsaros, G.; Gentile, P.; De Franceschi, S. Multifunctional Devices and Logic Gates with Undoped Silicon Nanowires. Nano Lett. 2012, 12, 3074–3079. [Google Scholar] [CrossRef] [Green Version]
- Shalan, A.E.; Barhoum, A.; Elseman, A.M.; Rashad, M.M.; Lira-Cantú, M. Nanofibers as Promising Materials for New Generations of Solar Cells. In Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–33. [Google Scholar]
- Kim, T.-Y.; Lee, T.K.; Kim, B.S.; Park, S.C.; Lee, S.; Im, S.S.; Bisquert, J.; Kang, Y.S. Triumphing over Charge Transfer Limitations of PEDOT Nanofiber Reduction Catalyst by 1,2-Ethanedithiol Doping for Quantum Dot Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Quochi, F. Random lasers based on organic epitaxial nanofibers. J. Opt. 2010, 12, 024003. [Google Scholar] [CrossRef] [Green Version]
- Quochi, F.; Saba, M.; Cordella, F.; Gocalinska, A.; Corpino, R.; Marceddu, M.; Anedda, A.; Andreev, A.; Sitter, H.; Sariciftci, N.S.; et al. Temperature Tuning of Nonlinear Exciton Processes in Self-Assembled Oligophenyl Nanofibers under Laser Action. Adv. Mater. 2008, 20, 3017–3021. [Google Scholar] [CrossRef]
- Cui, Y.; Duan, X.; Hu, A.J.; Lieber, C.M. Doping and Electrical Transport in Silicon Nanowires. J. Phys. Chem. B 2000, 104, 5213–5216. [Google Scholar] [CrossRef]
- Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L.J.; Kim, K.-H.; Lieber, C.M. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science 2001, 294, 1313–1317. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapour-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89. [Google Scholar] [CrossRef]
- Wagner, R.S. Whisker Technology; Levitt, A.P., Ed.; Wiley Interscience: New York, NY, USA, 1970; ISBN 0471531502/9780471531500. [Google Scholar]
- Combescot, M.; Combescot, R.; Dubin, F. Bose–Einstein condensation and indirect excitons: A review. Rep. Prog. Phys. 2017, 80, 066501. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.R.; de Godoy, M.P.F.; Brasil, M.J.S.P.; Iikawa, F. Spatially indirect excitons in type-II quantum dots. Appl. Phys. Lett. 2007, 90, 212105. [Google Scholar] [CrossRef]
- Merkl, P.; Mooshammer, F.; Steinleitner, P.; Girnghuber, A.; Lin, K.-Q.; Nagler, P.; Holler, J.; Schüller, C.; Lupton, J.M.; Korn, T.; et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 2019, 18, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, P.; Schaibley, J.R.; Jones, A.; Ross, J.S.; Wu, S.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N.; et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 2015, 6, 6242. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, F.; Bellus, M.Z.; Chiu, H.-Y.; Zhao, H. Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2–MoSe2 van der Waals Heterostructure. ACS Nano 2014, 8, 12717–12724. [Google Scholar] [CrossRef]
- Calman, E.V.; Fogler, M.M.; Butov, L.V.; Hu, S.; Mishchenko, A.; Geim, A.K. Indirect excitons in van der Waals heterostructures at room temperature. Nat. Commun. 2018, 9, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.-J.; MacDonald, A. How to make a bilayer exciton condensate flow. Nat. Phys. 2008, 4, 799–802. [Google Scholar] [CrossRef]
- Fogler, M.M.; Butov, L.V.; Novoselov, K. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 2014, 5, 4555. [Google Scholar] [CrossRef] [Green Version]
- Sammon, M.; Shklovskii, B.I. Attraction of indirect excitons in van der Waals heterostructures with three semiconducting layers. Phys. Rev. B 2019, 99, 165403. [Google Scholar] [CrossRef] [Green Version]
- Krenner, H.J.; Pryor, C.E.; He, J.; Petroff, P.M. A Semiconductor Exciton Memory Cell Based on a Single Quantum Nanostructure. Nano Lett. 2008, 8, 1750–1755. [Google Scholar] [CrossRef] [Green Version]
- Rolon, J.E.; Ulloa, S. Coherent control of indirect excitonic qubits in optically driven quantum dot molecules. Phys. Rev. B 2010, 82, 115307. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-H.; Leon, D.C.; Li, Z.; Litvak, E.; Deotare, P.B. Energy Transport of Hybrid Charge-Transfer Excitons. ACS Nano 2020, 14, 10462–10470. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Rothberg, L.J.; Papadimitrakopoulos, F.; Galvin, M.E.; Miller, T.M. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Phys. Rev. Lett. 1994, 72, 1104–1107. [Google Scholar] [CrossRef] [PubMed]
- Donegá, C.D.M. Formation of nanoscale spatially indirect excitons: Evolution of the type-II optical character of CdTe/CdSe heteronanocrystals. Phys. Rev. B 2010, 81, 165303. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Fu, X.; Zhang, D.-B. Strain gradient induced spatially indirect excitons in single crystalline ZnO nanowires. Nanoscale 2020, 12, 19083–19087. [Google Scholar] [CrossRef]
- Tartakovskii, A.I.; Timofeev, V.B.; Lysenko, V.G.; Birkedal, D.; Hvam, J. Direct and spatially indirect excitons in GaAs/AlGaAs superlattices in strong magnetic fields. J. Exp. Theor. Phys. 1997, 85, 601–608. [Google Scholar] [CrossRef]
- Pyrkova, O.A.; Pyrkov, V.N.; Vasilets, P.M. Development of Virtual Lattice Dynamics Method for Solving the Eigenvalue Problem of Three-Dimensional Elliptic Equation with a Multicenter Potential. In Smart Modelling for Engineering Systems. Smart Innovation, Systems and Technologies; Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C., Eds.; Springer: Singapore, 2021; Volume 215. [Google Scholar] [CrossRef]
- Khairutdinov, R.F.; Zamaraev, K.I.; Zhdanov, V.P. Tunneling Phenomena in Physics and Chemistry. In Comprehensive Chemical Kinetics; Compton, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1990; Chapter 2; Volume 30, pp. 7–68. ISSN 0069-8040/9780444873644. [Google Scholar] [CrossRef]
D, nm | h, nm | ||
---|---|---|---|
1.5 | 1.0 | 2 × 10−11 | 5 × 10−6 |
3.0 | 1.0 | 2 × 10−9 | 5 × 10−8 |
1.5 | 2.0 | 10−6 | 4 × 10−8 |
3.0 | 2.0 | 7 × 10−6 | 4 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrkov, V.N.; Burlakov, V.M. Properties of Spatially Indirect Excitons in Nanowire Arrays. Appl. Sci. 2022, 12, 4924. https://doi.org/10.3390/app12104924
Pyrkov VN, Burlakov VM. Properties of Spatially Indirect Excitons in Nanowire Arrays. Applied Sciences. 2022; 12(10):4924. https://doi.org/10.3390/app12104924
Chicago/Turabian StylePyrkov, Vladimir N., and Victor M. Burlakov. 2022. "Properties of Spatially Indirect Excitons in Nanowire Arrays" Applied Sciences 12, no. 10: 4924. https://doi.org/10.3390/app12104924
APA StylePyrkov, V. N., & Burlakov, V. M. (2022). Properties of Spatially Indirect Excitons in Nanowire Arrays. Applied Sciences, 12(10), 4924. https://doi.org/10.3390/app12104924