Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zaera, F. Chirality in adsorption on solid surfaces. Chem. Soc. Rev. 2017, 46, 7374–7398. [Google Scholar] [CrossRef] [PubMed]
- Vantomme, G.; Crassous, J. Pasteur and chirality: A story of how serendipity favors the prepared minds. Chirality 2021, 33, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Gal, J. Pasteur and the art of chirality. Nat. Chem. 2017, 9, 604–605. [Google Scholar] [CrossRef] [PubMed]
- Mason, S. The origin of chirality in nature. Trends Pharmacol. Sci. 1986, 7, 20–23. [Google Scholar] [CrossRef]
- Golbraikh, A.; Bonchev, D.; Tropsha, A. Novel Chirality Descriptors Derived from Molecular Topology. J. Chem. Inf. Comput. Sci. 2001, 41, 147–158. [Google Scholar] [CrossRef]
- Akhamanov, S.A.; Zhdanov, B.V.; Zheludev, N.I.; Kovrigin, A.I.; Kuznetsov, V.I. Nonlinear optical activity in crystals. JETP Lett. 1979, 29, 264. [Google Scholar]
- Aizu, K. Reversal in Optical Rotatory Power—Gyroelectric Crystals and Hypergyroelectric Crystals. Phys. Rev. 1964, 133, A1584. [Google Scholar] [CrossRef]
- Smith, C.W.; Gisser, D.G.; Young, M.; Powers, R.S. Liquid-crystal optical activity for temperature sensing. Appl. Phys. Lett. 1974, 24, 453. [Google Scholar] [CrossRef]
- Goto, H.; Akagi, K. Optically Active Conjugated Polymers Prepared from Achiral Monomers by Polycondensation in a Chiral Nematic Solvent. Angew. Chem. 2005, 117, 4396. [Google Scholar] [CrossRef]
- Liu, M.; Plum, E.; Li, H.; Li, S.; Xu, Q.; Zhang, X.; Zhang, C.; Zou, C.; Jin, B.; Han, J.; et al. Temperaure-Controlled Optical Activity and Negative Refractive Index. Adv. Func. Mater. 2021, 31, 2010249. [Google Scholar] [CrossRef]
- Plum, E.; Zhou, J.; Dong, J.; Fedotov, V.A.; Koschny, T.; Soukoulis, C.M.; Zheludev, N.I. Metamaterial with negative index due to chirality. Phys. Rev. B 2009, 79, 035407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Park, Y.S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X. Negative Refractive Index in Chiral Metamaterials. Phys. Rev. Lett. 2009, 102, 023901. [Google Scholar] [CrossRef]
- Furlani, E.P.; Jee, H.S.; Oh, H.S.; Baev, A.; Prasad, P.N. Laser writing of multiscale chiral polymer metamaterials. Adv. OptoElectron. 2012, 2012, 861569. [Google Scholar] [CrossRef]
- Scherf, U.; List, E.J.W. Semiconducting Polyfluorenes—Towards Reliable Structure–Property Relationships. Adv. Mater. 2002, 14, 477. [Google Scholar] [CrossRef]
- Neher, D. Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromol. Rapid Commun. 2001, 22, 1365. [Google Scholar] [CrossRef]
- Bernius, M.T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with Light-Emitting Polymers. Adv. Mater. 2000, 12, 1737. [Google Scholar] [CrossRef]
- Inbasekaran, M.; Woo, E.; Wu, W.; Bernius, M.; Wujkowski, L. Fluorene homopolymers and copolymers. Synth. Met. 2000, 397, 111. [Google Scholar] [CrossRef]
- Wang, X.; Perzon, E.; Mammo, W.; Oswald, F.; Admassie, S.; Persson, N.-K.; Langa, F.; Andersson, M.R.; Inganäs, O. Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 μm. Thin Solid Films 2006, 576, 511–512. [Google Scholar] [CrossRef]
- Kim, Y.; Cook, S.; Choulis, S.A.; Nelson, J.; Durrant, J.R.; Bradley, D.D.C. Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole). Chem. Mater. 2004, 16, 4812. [Google Scholar] [CrossRef]
- Kietzke, T.; Neher, D.; Kumke, M.; Montenegro, R.; Landfester, K.; Scherf, U. A Nanoparticle Approach to Control the Phase Separation in Polyfluorene Photovoltaic Devices. Macromolecules 2004, 37, 4882. [Google Scholar] [CrossRef]
- Snaith, H.J.; Arias, A.C.; Morteani, A.C.; Silva, C.; Friend, R.H. Charge Generation Kinetics and Transport Mechanisms in Blended Polyfluorene Photovoltaic Devices. Nano Lett. 2002, 2, 1353. [Google Scholar] [CrossRef]
- Grice, A.W.; Bradley, D.D.C.; Bernius, M.T.; Inbasekaran, M.; Wu, W.W.; Woo, E.P. High brightness and efficiency blue light-emitting polymer diodes. Appl. Phys. Lett. 1998, 73, 629. [Google Scholar] [CrossRef]
- He, Y.; Gong, S.; Hattori, R.; Kanicki, J. High performance organic polymer light-emitting heterostructure devices. Appl. Phys. Lett. 1999, 74, 2265. [Google Scholar] [CrossRef]
- Voigt, M.; Chappell, J.; Rowson, T.; Cadby, A.J.; Geoghegan, M.; Jones, R.A.L.; Lidzey, D.G. The interplay between the optical and electronic properties of light-emitting-diode applicable conjugated polymer blends and their phase-separated morphology. Org. Electron. 2005, 6, 35. [Google Scholar] [CrossRef]
- Lee, J.; Jung, B.-J.; Lee, S.K.; Lee, J.-I.; Cho, H.-J.; Shim, H.-K.J. Fluorene-based alternating polymers containing electron-withdrawing bithiazole units: Preparation and device applications. Polym. Sci. A: Polym. Chem. 2005, 43, 1845. [Google Scholar] [CrossRef]
- Koutsoupidou, M.; Uzunoglu, N.; Karanasiou, I.S. Antennas on Metamaterial Substrates as Emitting Components for THz Biomedical Imaging. In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Larnaca, Cyprus, 11–13 November 2012; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2012; pp. 319–322. [Google Scholar]
- Jin, Y. Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine. Adv. Mater. 2012, 24, 5153–5165. [Google Scholar] [CrossRef]
- Drachev, V.P.; Cai, W.; Chettiar, U.; Yuan, H.-K.; Sarychev, A.K.; Kildishev, A.V.; Klimeck, G.; Shalaev, V.M. Experimental verification of an optical negative-index material. Laser Phys. Lett. 2006, 3, 49–55. [Google Scholar] [CrossRef]
- Shalaev, V.M. Optical negative-index metamaterials. Nat. Photonics 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Soukoulis, C.M.; Kafesaki, M.; Economou, E.N. Negative-index materials: New frontiers in optics. Adv. Mater. 2006, 18, 1941–1952. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-Dimensional Optical Metamaterial with a Negative Refractive Index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Wei, J.J.; Schafmeister, C.; Bird, G.; Paul, A.; Naaman, R.; Waldeck, D.H. Molecular Chirality and Charge Transfer through Self-Assembled Scaffold Monolayers. J. Phys. Chem. B 2006, 110, 1301. [Google Scholar] [CrossRef] [PubMed]
- Schaaff, T.G.; Knight, G.; Shafigullin, M.N.; Borkman, R.F.; Whetten, R.L. Isolation and Selected Properties of a 10.4 kDa Gold: Glutathione Cluster Compound. J. Phys. Chem. B 1998, 102, 10643. [Google Scholar] [CrossRef]
- Schaaff, T.G.; Whetten, R.L. Giant Gold–Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions. J. Phys. Chem. B 2000, 104, 2630. [Google Scholar] [CrossRef]
- Yao, H.; Miki, K.; Nishida, N.; Sasaki, A.; Kimura, K. Large Optical Activity of Gold Nanocluster Enantiomers Induced by a Pair of Optically Active Penicillamines. J. Am. Chem. Soc. 2005, 127, 15536. [Google Scholar] [CrossRef]
- Oh, H.S.; Liu, S.; Jee, H.; Baev, A.; Swihart, M.T.; Prasad, P.N. Chiral Poly(fluorene-alt-benzothiadiazole) (PFBT) and Nanocomposites with Gold Nanoparticles: Plasmonically and Structurally Enhanced Chirality. J. Am. Chem. Soc. 2010, 132, 17346–17348. [Google Scholar] [CrossRef]
- Oh, H.S.; Jee, H.; Swihart, M.T.; Baev, A.; Prasad, P.N. Dramatic structural enhancement of chirality in photopatternable nanocomposites of chiral poly(fluorene-alt-benzothiadiazole) (PFBT) in achiral SU-8 photoresist. Adv. Funct. Mater. 2012, 22, 5074–5080. [Google Scholar] [CrossRef]
- Jee, H.; Oh, H.; Lee, J. In Situ Polymerization of Chiral Poly(fluorene-alt-benzothiadiazole) Nanocomposites with Enhanced Chirality. Appl. Sci. 2020, 10, 8740. [Google Scholar] [CrossRef]
- Lee, K.; Kim, R.H.; Yang, D.; Park, S. Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog. Polym. Sci. 2008, 33, 631–681. [Google Scholar] [CrossRef]
- Markowicz, P.P.; Tiryaki, H.; Pudavar, H.; Prasad, P.N.; Lepeshkin, N.N.; Boyd, R.W. Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals. Phys. Rev. Lett. 2004, 92, 083903. [Google Scholar] [CrossRef]
- Abbel, R.; Schenning, A.P.H.J.; Meijer, E.W. Molecular Weight Optimum in the Mesoscopic Order of Chiral Fluorene (Co)polymer Films. Macromolecules 2008, 41, 7497. [Google Scholar] [CrossRef]
- Kneer, L.M.; Roller, E.; Besteiro, L.V.; Schreiber, R.; Govorov, A.O.; Liedl, T. Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots. ACS Nano 2018, 12, 9110–9115. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, I.; Shemer, G.; Fried, T.; Kosower, E.M.; Markovich, G. Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chem. Int. Ed. 2008, 47, 4855. [Google Scholar] [CrossRef]
- Elliott, S.D.; Moloney, M.P.; Gun’ko, Y.K. Chiral Shells and Achiral Cores in CdS Quantum Dots. Nano Lett. 2008, 8, 2452. [Google Scholar] [CrossRef]
- Nakashima, T.; Kobayashi, Y.; Kawai, T. Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals. J. Am. Chem. Soc. 2009, 131, 10342. [Google Scholar] [CrossRef]
- Prasad, P.N. Introduction to Biophotonics, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; p. 149. [Google Scholar]
- Harinarayana, V.; Shin, Y.C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review. Opt. Laser Technol. 2021, 142, 107180. [Google Scholar] [CrossRef]
- Maaza, M.; Ngom, B.D.; Achouri, M.; Manikandan, K. Functional nanostructured oxides. Vacuum 2015, 114, 172–187. [Google Scholar] [CrossRef]
- Khamlich, S.; Srinivasu, V.V.; Konkin, A.; Cingo, N.; Thema, F.T.; Benyoussef, A.; Maaza, M. Photoinduced Electron Spin Resonance Phenomenon in α-Cr2O3 Nanospheres. J. Nanomater. 2015, 2015, 831065. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jee, H.; Chen, G.; Lee, J. Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures. Appl. Sci. 2022, 12, 8702. https://doi.org/10.3390/app12178702
Jee H, Chen G, Lee J. Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures. Applied Sciences. 2022; 12(17):8702. https://doi.org/10.3390/app12178702
Chicago/Turabian StyleJee, Hongsub, Guanying Chen, and Jaehyeong Lee. 2022. "Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures" Applied Sciences 12, no. 17: 8702. https://doi.org/10.3390/app12178702
APA StyleJee, H., Chen, G., & Lee, J. (2022). Amplification of Chirality in Photopatterned 3D Nanostructures of Chiral/Achiral Mixtures. Applied Sciences, 12(17), 8702. https://doi.org/10.3390/app12178702