Application of Machine Learning Using Color and Texture Analysis to Recognize Microwave Vacuum Puffed Pork Snacks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Examination of Morphological Structure Using Cryo-SEM
2.3. Determination of Basic Chemical Composition
2.4. Texture Analysis
2.5. Color Analysis
2.6. Structure of Artificial Neural Networks
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Visualization of Morphological Structure Using Cryo-SEM
3.3. Texture Analysis
3.4. Color Analysis
3.5. Machine Learning in Microwave Vacuum Puffed Pork Snacks
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lule, S.U.; Xia, W. Food Phenolics, Pros and Cons: A Review. Food Rev. Int. 2006, 21, 367–388. [Google Scholar] [CrossRef]
- Przybył, K.; Samborska, K.; Koszela, K.; Masewicz, Ł.; Pawlak, T. Artificial neural networks in the evaluation of the influence of the type and content of carrier on selected quality parameters of spray dried raspberry powders. Measurement 2021, 186, 110014. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Wawrzyniak, J.; Gierz, L. Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Comput. Electron. Agric. 2018, 155, 314–323. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Przybył, J.; Rudzińska, M.; Gierz, Ł.; Domian, E. Neural image analysis and electron microscopy to detect and describe selected quality factors of fruit and vegetable spray-dried powders—Case study: Chokeberry powder. Sensors 2019, 19, 4413. [Google Scholar] [CrossRef] [Green Version]
- Przybył, K.; Pilarska, A.; Duda, A.; Wojcieszak, D.; Frankowski, J.; Koszela, K.; Boniecki, P.; Kujawa, S.; Mueller, W.; Gierz, Ł. Health properties and evaluation of quality of dried strawberry fruit produced using the convective drying method with neural image analysis. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 10–13 May 2019; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2019; Volume 11179. [Google Scholar]
- Przybył, K.; Duda, A.; Koszela, K.; Stangierski, J.; Polarczyk, M.; Gierz, Ł. Classification of dried strawberry by the analysis of the acoustic sound with artificial neural networks. Sensors 2020, 20, 499. [Google Scholar] [CrossRef] [Green Version]
- Przybył, K.; Wawrzyniak, J.; Koszela, K.; Adamski, F.; Gawrysiak-Witulska, M. Application of Deep and Machine Learning Using Image Analysis to Detect Fungal Contamination of Rapeseed. Sensors 2020, 20, 7305. [Google Scholar] [CrossRef]
- Przybył, K.; Koszela, K.; Adamski, F.; Samborska, K.; Walkowiak, K.; Polarczyk, M. Deep and machine learning using SEM, FTIR, and texture analysis to detect polysaccharide in raspberry powders. Sensors 2021, 21, 5823. [Google Scholar] [CrossRef]
- Przybył, K.; Masewicz, Ł.; Koszela, K.; Duda, A.; Szychta, M.; Gierz, Ł. An MLP artificial neural network for detection of the degree of saccharification of Arabic gum used as a carrier agent of raspberry powders. In Proceedings of the Thirteenth International Conference on Digital Image Processing (ICDIP 2021), Singapore, 20–23 May 2021; Jiang, X., Fujita, H., Eds.; SPIE: Bellingham, WA, USA, 2021; Volume 11878, p. 93. [Google Scholar]
- Sejnowski, T.J.; Cypryański, P. Deep Learning: Głęboka Rewolucja: Kiedy Sztuczna Inteligencja Spotyka Się z Ludzką; Publishing House Poltext: Warsaw, Poland, 2019. [Google Scholar]
- Boniecki, P.; Idzior-Haufa, M.; Pilarska, A.A.; Pilarski, K.; Kolasa-Wiecek, A. Neural classification of compost maturity by means of the self-organising feature map artificial neural network and learning vector quantization algorithm. Int. J. Environ. Res. Public Health 2019, 16, 3294. [Google Scholar] [CrossRef] [Green Version]
- Sturm, T.; Gerlach, J.; Pumplun, L.; Mesbah, N.; Peters, F.; Tauchert, C.; Nan, N.; Buxmann, P. Coordinating human and machine learning for effective organizational learning. MIS Q. 2021, 45, 1581–1602. [Google Scholar] [CrossRef]
- Boniecki, P.; Raba, B.; Pilarska, A.A.; Sujak, A.; Zaborowicz, Z.; Pilarski, K.; Wojcieszak, W. Neural reduction of image data in order to determine the quality of malting barley. Sensors 2021, 21, 5696. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Boniecki, P.; Idzior-Haufa, M.; Zaborowicz, M.; Pilarski, K.; Przybylak, A.; Piekarska-Boniecka, H. Image analysis methods in classifying selected malting barley varieties by neural modelling. Agriculture 2021, 11, 732. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Partial Least Squares Regression (PLSR) Applied to NIR and HSI Spectral Data Modeling to Predict Chemical Properties of Fish Muscle. Food Eng. Rev. 2016, 9, 36–49. [Google Scholar] [CrossRef]
- Kumar, P.; Verma, A.K.; Kumar, D.; Umaraw, P.; Mehta, N.; Malav, O.P. Meat Snacks: A Novel Technological Perspective (Chapter 11). In Innovations in Traditional Foods; Woodhead Publishing: Sawston, UK, 2019; pp. 293–321. [Google Scholar]
- Dhaliwal, H.K.; Gänzle, M.; Roopesh, M.S. Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica. Food Res. Int. 2021, 147, 110548. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Pawlak, T.; Ryniecki, A.; Stangierski, J. Puffing of pork: Effects of process conditions on expansion ratio. Przem. Spożywczy 2016, 1, 15–17. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M. Effect of drying methods on rheological and textural properties, and color changes of wild sage seed gum. J. Food Sci. Technol. 2015, 52, 7361–7368. [Google Scholar] [CrossRef]
- Walkowiak, K.; Masewicz, Ł.; Baranowska, H.M. LF NMR studies of microwave modified starch witch lysozyme. Sci. Nat. Technol. 2018, 12, 341–351. [Google Scholar]
- Walkowiak, K.; Przybył, K.; Baranowska, H.M.; Koszela, K.; Masewicz, Ł.; Piątek, M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers 2022, 14, 184. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Changes in quality of microwave-treated agricultural products—A review. Biosyst. Eng. 2007, 98, 1–16. [Google Scholar] [CrossRef]
- Cui, Z.W.; Xu, S.Y.; Sun, D.W.; Chen, W. Temperature changes during microwave-vacuum drying of sliced carrots. Dry. Technol. 2007, 23, 1057–1074. [Google Scholar] [CrossRef]
- Sutar, P.P.; Prasad, S. Modeling microwave vacuum drying kinetics and moisture diffusivity of carrot slices. Dry. Technol. 2007, 25, 1695–1702. [Google Scholar] [CrossRef]
- Clary, C.D.; Wang, S.; Petrucci, V.E. Fixed and incremental levels of microwave power application on drying grapes under vacuum. J. Food Sci. 2005, 70, E344–E349. [Google Scholar] [CrossRef]
- Böhm, V.; Kühnert, S.; Rohm, H.; Scholze, G. Improving the nutritional quality of microwave-vacuum dried strawberries: A preliminary study. Food Sci. Technol. Int. 2016, 12, 67–75. [Google Scholar] [CrossRef]
- Figiel, A. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. J. Food Eng. 2010, 98, 461–470. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Legua, P.; Lech, K.; Carbonell-Barrachina, Á.A.; Hernández, F. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chem. 2016, 207, 170–179. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Shan, L.; Fang, Z. Microwave-vacuum heating parameters for processing savory crisp bighead carp (Hypophthalmichthys nobilis) slices. J. Food Eng. 2007, 79, 885–891. [Google Scholar] [CrossRef]
- Laopoolkit, P.; Suwannaporn, P. Effect of pretreatments and vacuum drying on instant dried pork process optimization. Meat Sci. 2011, 88, 553–558. [Google Scholar] [CrossRef]
- Hu, Q.-G.; Zhang, M.; Mujumdar, A.S.; Xiao, G.-N.; Sun, J.-C. Drying of edamames by hot air and vacuum microwave combination. J. Food Eng. 2006, 77, 977–982. [Google Scholar] [CrossRef]
- Pawlak, T.; Ryniecki, A.; Siatkowski, I. Optimization of process parameters for microwave-vacuum puffing of black radish slices using the response surface method. Acta Sci. Pol. Technol. Aliment. 2013, 12, 253–262. [Google Scholar]
- Lee, S.W.; Kang, C.S. Effects of moisture content and drying temperature on the physicochemical properties of ostrich jerky. Food/Nahrung 2003, 47, 330–333. [Google Scholar] [CrossRef]
- Pawlak, T.; Gawałek, J.; Ryniecki, A.; Stangierski, J.; Siatkowski, I.; Peplińska, B.; Pospiech, E. Microwave vacuum drying and puffing of the meat tissue—Process analysis. Dry. Technol. 2019, 37, 156–163. [Google Scholar] [CrossRef]
- PN-ISO 1442:2000; Meat and Meat Products—Determination of Moisture Content (Polish Standard). PKN: Warsaw, Poland, 2000.
- PN-75/A-04018:1975/Az3:2002; Agricultural Food Products—Determination of Nitrogen Content by the Kjeldahl Method and Expressing as Protein (Polish Standard). PKN: Warsaw, Poland, 2002.
- PN-ISO 1444:2000; Meat and Meat Products—Determination of Free Fat Content (Polish Standard). PKN: Warsaw, Poland, 2000.
- PN-ISO 936:2000; Meat and Meat Products—Determination of Total Ash Content (Polish Standard). PKN: Warsaw, Poland, 2000.
- FSIS. Compliance Guideline for Meat and Poultry Jerky Produced by Small and Very Small Establishments; Compliance Guideline; USDA: Washington, DC, USA, 2014; pp. 1–54. [Google Scholar]
- Yan, W.Q.; Zhang, M.; Huang, L.L.; Tang, J.; Mujumdar, A.S.; Sun, J.C. Studies on different combined microwave drying of carrot pieces. Int. J. Food Sci. Technol. 2010, 45, 2141–2148. [Google Scholar] [CrossRef]
- Gierz, Ł.; Przybył, K.; Koszela, K.; Duda, A.; Ostrowicz, W. The use of image analysis to detect seed contamination—A case study of triticale. Sensors 2021, 21, 151. [Google Scholar] [CrossRef] [PubMed]
- Boniecki, P.; Zaborowicz, M.; Pilarska, A.; Piekarska-Boniecka, H. Identification process of selected graphic features apple tree pests by neural models type MLP, RBF and DNN. Agriculture 2020, 10, 218. [Google Scholar] [CrossRef]
- Keshtegar, B.; Piri, J.; Kisi, O. A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput. Electron. Agric. 2016, 127, 120–130. [Google Scholar] [CrossRef]
- Biegalski, J.; Cais-Sokolińska, D.; Wawrzyniak, J. Effect of packaging and portioning on the dynamics of water–fat serum release from fresh pasta filata soft cheese. Foods 2022, 11, 296. [Google Scholar] [CrossRef]
- Hasar, H.; Hasar, U.C.; Kaya, Y.; Ozturk, H.; Izginli, M.; Ozbek, I.Y.; Oztas, T.; Canbolat, M.Y.; Ertugrul, M. Prediction of water-adulteration within honey by air-line de-embedding waveguide measurements. Measurement 2021, 179, 109469. [Google Scholar] [CrossRef]
- Wang, W.; Yu, W.; Zhao, L.; Chai, T. PCA and neural networks-based soft sensing strategy with application in sodium aluminate solution. J. Exp. Theor. Artif. Intell. 2011, 23, 127–136. [Google Scholar] [CrossRef]
- Do Nascimento, M.Z.; Martins, A.S.; Azevedo Tosta, T.A.; Neves, L.A. Lymphoma images analysis using morphological and non-morphological descriptors for classification. Comput. Methods Programs Biomed. 2018, 163, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Nummer, B.A.; Harrison, J.A.; Harrison, M.A.; Kendall, P.; Sofos, J.N.; Andress, E.L. Effects of Preparation Methods on the Microbiological Safety of Home-Dried Meat Jerky. J. Food Prot. 2004, 67, 2337–2341. [Google Scholar] [CrossRef]
- Konieczny, P.; Stangierski, J.; Kijowski, J. Physical and chemical characteristics and acceptability of home style beef jerky. Meat Sci. 2007, 76, 253–257. [Google Scholar] [CrossRef]
- Calicioglu, M.; Sofos, J.N.; Samelis, J.; Kendall, P.A.; Smith, G.C. Effect of acid adaptation on inactivation of Salmonella during drying and storage of beef Jerky treated with marinades. Int. J. Food Microbiol. 2000, 89, 51–65. [Google Scholar] [CrossRef]
- Lim, J.Y.; Yoon, J.W.; Hovde, C.J. A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.W.; Hovde, C.J. All blood, No stool: Enterohemorrhagic Escherichia coli O157:H7 infection. J. Vet. Sci. 2008, 9, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Oporto, B.; Esteban, J.I.; Aduriz, G.; Juste, R.A.; Hurtado, A. Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli in healthy cattle, sheep and swine herds in Northern Spain. Zoonoses Public Health 2008, 55, 73–81. [Google Scholar] [CrossRef]
- Pohlman, S.R.; Kalchayanand, N.; Means, W.J.; Field, R.A.; Wolf, A.W. Destruction of Non-Pathogenic Escherichia coli in Beef Jerky Made With Home-Style Dehydrators; University of Wyoming, Annual Animal Science Research Report; Department of Animal Science, University of Wyoming: Laramie, WY, USA, 2003; pp. 100–105. [Google Scholar]
- HACCP. Generic Model-Dried Meats (Beef Jerky); ACIA Report; CFIA: Ottawa, ON, Canada, 1997; pp. 1–35. [Google Scholar]
- Xiong, Y.L. Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. Nutr. 2009, 34, 293–320. [Google Scholar] [CrossRef]
- Nollet, L.M.L.; Toldra, F. Handbook of Muscle Foods Analysis; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Ozuna, C.; Puig, A.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. J. Food Eng. 2013, 119, 84–93. [Google Scholar] [CrossRef]
- Powell, T.H.; Hunt, M.C.; Dikeman, M.E. Enzymatic assay to determine collagen thermal denaturation and solubilization. Meat Sci. 2000, 54, 307–311. [Google Scholar] [CrossRef]
- Lillford, P.; van Vliet, T.; van de Velde, F. Discussion session on solid foods. Food Hydrocoll. 2006, 20, 432–437. [Google Scholar] [CrossRef]
- Ashie, I.N.A.; Sorensen, T.L.; Nielsen, P.M. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J. Food Sci. 2002, 67, 2138–2142. [Google Scholar] [CrossRef]
- Damez, J.L.; Clerjon, S. Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 2008, 80, 132–149. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Krohn, J.; Beyleveld, G.; Bassens, A. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence; Addison-Wesley Data and Analytics Series; Pearson Education Canada Inc.: North York, ON, Canada, 2020. [Google Scholar]
Type of Sample | Water (%) | Protein (%) | Fat (%) | Ash (%) | Moisture-to-Protein Ratio (MPR) |
---|---|---|---|---|---|
Unmodified pork | 9.03 ± 0.07 | 84.97 a ± 0.20 | 3.91 ± 0.12 | 2.07 b ± 0.06 | 0.11 |
Modified pork | 9.07 ± 0.09 | 83.11 b ± 0.18 | 3.94 ± 0.06 | 3.83 a ± 0.27 | 0.11 |
Type of Sample | Hardness [N] | Slope [N/s] | Work of Compression [Nxs] |
---|---|---|---|
Unmodified pork | 133.53 a ± 12.43 | 4.60 a ± 0.51 | 1788.51 a ± 214.67 |
Modified pork | 108.40 b ± 9.64 | 3.80 b ± 0.41 | 1632.95 a ± 207.91 |
Type of Sample | Color Parameters | ||
---|---|---|---|
L* | a* | b* | |
Unmodified pork | 57.49 a ± 2.31 | 3.21 b ± 0.41 | 5.42 b ± 0.75 |
Modified pork | 51.67 b ± 2.07 | 4.35 a ± 0.85 | 8.41 a ± 1.07 |
Structure of ANN | Activation Function Hidden/Output Layer | Function Error | Training of Error | Testing of Error | Validation of Error |
---|---|---|---|---|---|
MLP 3-12-1 | Tanh/Lin | sum of squares | 0.0056 | 0.0338 | 0.1046 |
MLP 3-10-1 | Tanh/Tanh | sum of squares | 0.0006 | 0.0493 | 0.0007 |
ANN | Statistical Index | Training | Testing | Validation |
---|---|---|---|---|
MLP 3-12-1 (by Lab analysis) | RMSE | 0.0112 | 0.0676 | 0.2092 |
Coefficient of determination (R2) | 0.9787 | 0.8811 | 0.8666 | |
Learning cases | 28 | 6 | 6 | |
MLP 3-10-1 (by Texture analysis) | RMSE | 0.0012 | 0.0986 | 0.0140 |
Coefficient of determination (R2) | 0.9867 | 0.9819 | 0.9046 | |
Learning cases | 28 | 6 | 6 |
L* | a* | b* | Hardness [N] | Work of Compression [Nxs] | Slope [N/s] | |
---|---|---|---|---|---|---|
L* | 1.00000 | |||||
a* | −0.50098 | 1.00000 | ||||
b* | −0.74549 | 0.70870 | 1.00000 | |||
Hardness | 0.63644 | −0.30142 | −0.65972 | 1.00000 | ||
Work of compression | 0.26711 | −0.01180 | −0.18656 | 0.58499 | 1.00000 | |
Slope | 0.6372 | −0.39516 | −0.60272 | 0.85497 | 0.56571 | 1.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, T.; Pilarska, A.A.; Przybył, K.; Stangierski, J.; Ryniecki, A.; Cais-Sokolińska, D.; Pilarski, K.; Peplińska, B. Application of Machine Learning Using Color and Texture Analysis to Recognize Microwave Vacuum Puffed Pork Snacks. Appl. Sci. 2022, 12, 5071. https://doi.org/10.3390/app12105071
Pawlak T, Pilarska AA, Przybył K, Stangierski J, Ryniecki A, Cais-Sokolińska D, Pilarski K, Peplińska B. Application of Machine Learning Using Color and Texture Analysis to Recognize Microwave Vacuum Puffed Pork Snacks. Applied Sciences. 2022; 12(10):5071. https://doi.org/10.3390/app12105071
Chicago/Turabian StylePawlak, Tomasz, Agnieszka A. Pilarska, Krzysztof Przybył, Jerzy Stangierski, Antoni Ryniecki, Dorota Cais-Sokolińska, Krzysztof Pilarski, and Barbara Peplińska. 2022. "Application of Machine Learning Using Color and Texture Analysis to Recognize Microwave Vacuum Puffed Pork Snacks" Applied Sciences 12, no. 10: 5071. https://doi.org/10.3390/app12105071
APA StylePawlak, T., Pilarska, A. A., Przybył, K., Stangierski, J., Ryniecki, A., Cais-Sokolińska, D., Pilarski, K., & Peplińska, B. (2022). Application of Machine Learning Using Color and Texture Analysis to Recognize Microwave Vacuum Puffed Pork Snacks. Applied Sciences, 12(10), 5071. https://doi.org/10.3390/app12105071