Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review
Abstract
:1. Introduction
2. ML Methods Used in Structural Wind Engineering
2.1. Artificial Neural Network (ANN)
2.2. Fuzzy Neural Network (FNN)
2.3. Decision Tree (DT)
2.4. Ensemble Methods (EM)
2.5. Gaussian Process Regression (GPR)
2.6. Generative Adversarial Networks (GAN)
2.7. K-Nearest Neighbors (KNN)
2.8. Support Vector Machine (SVM)
3. Prior Studies on Applying ML Techniques in Structural Wind Engineering
3.1. Prediction of Wind-Induced Pressure
3.2. Integration of CFD with Machine Learning
3.3. Aeroelastic Response Prediction Using ML
Study No. | Ref. | Surface Type | Source of Data | Input Variables | Output Variables | ML Algorithm |
---|---|---|---|---|---|---|
1 | [135] | Bridges | Experimental data from BLWT | D/B | Flutter derivatives (H1 and A2) | ANN |
2 | [140] | Tall buildings | Experimental data from BLWT | Vb and top floor displacements | Column strains | CNN |
3 | [141] | Tall buildings | IndianWind Code | H, B, L, Vb and TC | Across wind shear and moment | ANN |
4 | [142] | Long span bridge | Full scale data | Cross spectral density | Buffeting response | ANN and SVR |
5 | [143] | Box girders | Experimental data from BLWT | Vertex coordinates (mi, ni) | Flutter wind speed | SVR, ANN, RF and GBRT |
6 | [144] | Rectangular cylinders | Previous experimental studies | Ti, B/D and Sc | Crosswind vibrations | DT-RF-KNN-GBRT |
7 | [145] | Cable roofs | Experimental data from BLWT and (FEM) | 11 parameters | Vertical displacements | ANN |
8 | [146] | Tall buildings | WERC database-TU | Terrain roughness, aspect ratio and D/B. | Crosswind force spectra | LGBM |
4. Summary of Tools of Performance Assessment of ML Models
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
Nomenclature | |
x | Machine learning input variable |
y | Machine learning output |
h | Neural network hidden layer |
Input for a generic neuron | |
Weight of a generic connection between two nodes | |
Bias of a generic neuron | |
Output for a generic neuron | |
Transfer function | |
Value of membership function | |
mij | Mean of the Gaussian function |
σij | Standard deviation of the Gaussian function |
L1 | LASSO regularization |
L2 | Ridge regularization |
Predicted output | |
Measured output | |
Normalized measure for error | |
θ | Wind direction |
β | Roof slope |
D/B | Side ratio |
x, y, z | Pressure taps coordinates |
Re | Reynolds number |
Ti | Turbulence intensity |
Sx, Sy | Interfering building location |
R/D | Curvature ratio |
d/b | Side ratio without curvature |
D/H | Height ratio |
h | Building height |
Sc | Scruton number |
M | Mass ratio |
L | Distance between the centerline of the cylinders |
U | Reduced velocity |
H1 | Flutter Derivatives (vertical motion) |
A2 | Flutter Derivatives (torisonal motion) |
mi, ni | Vertex coordinates |
L | Length of the building |
Vb | Wind velocity |
TC | Terrain category |
Mean pressure coefficient | |
Peak pressure coefficient | |
Root mean square pressure coefficient | |
φ | The angle measured horizontally with respect to wind direction |
П | The angle measured vertically with respect to the vertical axis of the dome to the ring beam. |
CA | Neighboring area density |
Abbreviations | |
ABLWT | Atmospheric boundary layer wind tunnel |
AIC | Akaike information criterion |
ANN | Artificial neural network |
CFD | Computational fluid dynamics |
CNN | Convolutional neural networks |
DL | Deep learning |
DNN | Deep neural network |
DT | Decision tree regression |
Ef | Coefficient of efficiency |
FFNN | Feed-forward neural network |
FNN | Fuzzy neural networks |
GAN | Generative adversarial networks |
GANN | Genetic neural networks |
GBRT | Gradient boosting regression tree |
GMDH-NN | Group method of data handling neural networks |
GPR | Gaussian process regression |
KNN | K-nearest neighbor regression |
LES | Large eddy simulation |
Lr | Learning Rate |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
ML | Machine learning |
MSE | Mean square error |
POD-BPNN | Proper orthogonal decomposition-backpropagation neural network |
R | Pearson’s correlation coefficient |
R2 | Coefficient of determination |
RANS | Reynolds-averaged Navier–Stokes |
RBF-NN | Radial basis function neural networks |
ReLU | Rectified liner unit |
RF | Random forest |
RMS | Root mean square |
RMSE | Root mean square error |
RNN | recurrent neural networks |
RTHS | Real-time hybrid simulation |
SI | Scatter index |
SVM | Support vector machine |
VIV | Vortex induced vibration |
WNN | Wavelet neural network |
References
- Solomonoff, R. The time scale of artificial intelligence: Reflections on social effects. Hum. Syst. Manag. 1985, 5, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Mjolsness, E.; DeCoste, D. Machine Learning for Science: State of the Art and Future Prospects. Science 2001, 293, 2051–2055. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Sun, H.; Burton, H.V.; Huang, H. Machine learning applications for building structural design and performance assessment: State-of-the-art review. J. Build. Eng. 2020, 33, 101816. [Google Scholar] [CrossRef]
- Saravanan, R.; Sujatha, P. A State of Art Techniques on Machine Learning Algorithms: A Perspective of Supervised Learning Approaches in Data Classification. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 945–949. [Google Scholar] [CrossRef]
- Kang, M.; Jameson, N.J. Machine Learning: Fundamentals. Progn. Health Manag. Electron. 2018, 85–109. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Adeli, H. Neural Networks in Civil Engineering: 1989–2000. Comput. Civ. Infrastruct. Eng. 2001, 16, 126–142. [Google Scholar] [CrossRef]
- Çevik, A.; Kurtoğlu, A.E.; Bilgehan, M.; Gülşan, M.E.; Albegmprli, H.M. Support vector machines in structural engineering: A review. J. Civ. Eng. Manag. 2015, 21, 261–281. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Velickov, S.; Solomatine, D. Support vector machines: Review and applications in civil engineering. In Proceedings of the 2nd Joint Workshop on Application of AI in Civil Engineering, Cottbus, Germany, 26–28 March 2000; pp. 45–58. [Google Scholar]
- Bas, E.E.; Moustafa, M.A. Real-Time Hybrid Simulation with Deep Learning Computational Substructures: System Validation Using Linear Specimens. Mach. Learn. Knowl. Extr. 2020, 2, 26. [Google Scholar] [CrossRef]
- Bas, E.E.; Moustafa, M.A. Communication Development and Verification for Python-Based Machine Learning Models for Real-Time Hybrid Simulation. Front. Built Environ. 2020, 6, 574965. [Google Scholar] [CrossRef]
- Xie, Y.; Ebad Sichani, M.; Padgett, J.E.; Desroches, R. The promise of implementing machine learning in earthquake engineering: A state-of-the-art review. Earthq. Spectra 2020, 36, 1769–1801. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.-W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Munawar, H.S.; Hammad, A.; Ullah, F.; Ali, T.H. After the flood: A novel application of image processing and machine learning for post-flood disaster management. In Proceedings of the 2nd International Conference on Sustainable Development in Civil Engineering (ICSDC 2019), Jamshoro, Pakistan, 5–7 December 2019; pp. 5–7. [Google Scholar]
- Deka, P.C. A Primer on Machine Learning Applications in Civil Engineering; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Fu, J. Review on Application of Artificial Intelligence in Civil Engineering. Comput. Model. Eng. Sci. 2019, 121, 845–875. [Google Scholar] [CrossRef]
- Reich, Y. Artificial Intelligence in Bridge Engineering. Comput. Civ. Infrastruct. Eng. 1996, 11, 433–445. [Google Scholar] [CrossRef]
- Reich, Y. Machine Learning Techniques for Civil Engineering Problems. Comput. Civ. Infrastruct. Eng. 1997, 12, 295–310. [Google Scholar] [CrossRef]
- Lu, P.; Chen, S.; Zheng, Y. Artificial Intelligence in Civil Engineering. Math. Probl. Eng. 2012, 2012, 145974. [Google Scholar] [CrossRef] [Green Version]
- Vadyala, S.R.; Betgeri, S.N.; Matthews, D.; John, C. A Review of Physics-based Machine Learning in Civil Engineering. arXiv 2021, arXiv:2110.04600. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Dixon, C.R. The Wind Resistance of Asphalt Roofing Shingles; University of Florida: Gainesville, FL, USA, 2013. [Google Scholar]
- Flood, I. Neural Networks in Civil Engineering: A Review. In Civil and Structural Engineering Computing: 2001; Saxe-Coburg Publications: Stirlingshire, UK, 2001; pp. 185–209. [Google Scholar] [CrossRef]
- Rao, D.H. Fuzzy Neural Networks. IETE J. Res. 1998, 44, 227–236. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S. Structural Damage Detection in Civil Engineering with Machine Learning: Current State of the Art. In Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing; Springer: Cham, Switzerland, 2022; pp. 223–229. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Hsieh, Y.-A.; Tsai, Y.J. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. J. Sound Vib. 2020, 491, 115741. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review. Arch. Comput. Methods Eng. 2020, 28, 2621–2643. [Google Scholar] [CrossRef]
- Smarsly, K.; Dragos, K.; Wiggenbrock, J. Machine learning techniques for structural health monitoring. In Proceedings of the 8th European Workshop On Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016; Volume 2, pp. 1522–1531. [Google Scholar]
- Mishra, M. Machine learning techniques for structural health monitoring of heritage buildings: A state-of-the-art review and case studies. J. Cult. Heritage 2021, 47, 227–245. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Laima, S.; Li, H. Data-driven modeling of bridge buffeting in the time domain using long short-term memory network based on structural health monitoring. Struct. Control Health Monit. 2021, 28, e2772. [Google Scholar] [CrossRef]
- Shahin, M. A review of artificial intelligence applications in shallow foundations. Int. J. Geotech. Eng. 2014, 9, 49–60. [Google Scholar] [CrossRef]
- Puri, N.; Prasad, H.D.; Jain, A. Prediction of Geotechnical Parameters Using Machine Learning Techniques. Procedia Comput. Sci. 2018, 125, 509–517. [Google Scholar] [CrossRef]
- Pirnia, P.; Duhaime, F.; Manashti, J. Machine learning algorithms for applications in geotechnical engineering. In Proceedings of the GeoEdmonton, Edmonton, AL, Canada, 23–26 September 2018; pp. 1–37. [Google Scholar]
- Yin, Z.; Jin, Y.; Liu, Z. Practice of artificial intelligence in geotechnical engineering. J. Zhejiang Univ. A 2020, 21, 407–411. [Google Scholar] [CrossRef]
- Chao, Z.; Ma, G.; Zhang, Y.; Zhu, Y.; Hu, H. The application of artificial neural network in geotechnical engineering. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 022054. [Google Scholar] [CrossRef]
- Shahin, M.A. State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci. Front. 2016, 7, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, Y.-M.; Mao, J.-X. Sparse Gaussian process regression for multi-step ahead forecasting of wind gusts combining numerical weather predictions and on-site measurements. J. Wind Eng. Ind. Aerodyn. 2021, 220, 104873. [Google Scholar] [CrossRef]
- Simiu, E.; Scanlan, R.H. Wind Effects on Structures: Fundamentals and Applications to Design; John Wiley: New York, NY, USA, 1996. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 1999; Mc Millan: Hamilton, NJ, USA, 2010; pp. 1–24. [Google Scholar]
- Nasrabadi, N.M. Pattern recognition and machine learning. J. Electron. Imaging 2007, 16, 049901. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Neural Networks and Learning Machines, 3/E; Pearson Education India: Noida, India, 2010. [Google Scholar]
- Waszczyszyn, Z.; Ziemiański, L. Neural Networks in the Identification Analysis of Structural Mechanics Problems. In Parameter Identification of Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2005; pp. 265–340. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Demuth, H.; Beale, M. Neural Network Toolbox for Use with MATLAB; The Math Works Inc.: Natick, MA, USA, 1998; pp. 10–30. [Google Scholar]
- Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Royal Signals and Radar Establishment Malvern: Malvern, UK, 1988. [Google Scholar]
- Park, J.; Sandberg, I.W. Universal Approximation Using Radial-Basis-Function Networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef]
- Bianchini, M.; Frasconi, P.; Gori, M. Learning without local minima in radial basis function networks. IEEE Trans. Neural Networks 1995, 6, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Liang, S.; Li, Q. Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks. Comput. Struct. 2007, 85, 179–192. [Google Scholar] [CrossRef]
- Fu, J.; Li, Q.; Xie, Z. Prediction of wind loads on a large flat roof using fuzzy neural networks. Eng. Struct. 2005, 28, 153–161. [Google Scholar] [CrossRef]
- Nilsson, N.J. Introduction to Machine Learning an Early Draft of a Proposed Textbook Department of Computer Science. Mach. Learn. 2005, 56, 387–399. [Google Scholar]
- Loh, W. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Loh, W.-Y. Fifty Years of Classification and Regression Trees. Int. Stat. Rev. 2014, 82, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. Unsupervised learning. In The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 485–585. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Persson, C.; Bacher, P.; Shiga, T.; Madsen, H. Multi-site solar power forecasting using gradient boosted regression trees. Sol. Energy 2017, 150, 423–436. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Hu, G.; Kwok, K. Predicting wind pressures around circular cylinders using machine learning techniques. J. Wind Eng. Ind. Aerodyn. 2020, 198, 104099. [Google Scholar] [CrossRef]
- Zhang, Y.; Haghani, A. A gradient boosting method to improve travel time prediction. Transp. Res. Part C Emerg. Technol. 2015, 58, 308–324. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Model Selection and Adaptation of Hyperparameters. In Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Ebden, M. Gaussian Processes: A Quick Introduction. arXiv 2015, arXiv:1505.02965. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–11 December 2014. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. Int. Stat. Rev. Int. Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wang, L. Support Vector Machines: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 177. [Google Scholar]
- Cóstola, D.; Blocken, B.; Hensen, J. Overview of pressure coefficient data in building energy simulation and airflow network programs. Build. Environ. 2009, 44, 2027–2036. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Kopp, G.; Surry, D. Interpolation of wind-induced pressure time series with an artificial neural network. J. Wind Eng. Ind. Aerodyn. 2002, 90, 589–615. [Google Scholar] [CrossRef]
- Chen, Y.; Kopp, G.; Surry, D. Prediction of pressure coefficients on roofs of low buildings using artificial neural networks. J. Wind Eng. Ind. Aerodyn. 2003, 91, 423–441. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, L. RBF neural networks for the prediction of building interference effects. Comput. Struct. 2004, 82, 2333–2339. [Google Scholar] [CrossRef]
- Gavalda, X.; Ferrer-Gener, J.; Kopp, G.A.; Giralt, F. Interpolation of pressure coefficients for low-rise buildings of different plan dimensions and roof slopes using artificial neural networks. J. Wind Eng. Ind. Aerodyn. 2011, 99, 658–664. [Google Scholar] [CrossRef]
- Dongmei, H.; Shiqing, H.; Xuhui, H.; Xue, Z. Prediction of wind loads on high-rise building using a BP neural network combined with POD. J. Wind Eng. Ind. Aerodyn. 2017, 170, 1–17. [Google Scholar] [CrossRef]
- Bre, F.; Gimenez, J.M.; Fachinotti, V. Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy Build. 2018, 158, 1429–1441. [Google Scholar] [CrossRef]
- Fernández-Cabán, P.L.; Masters, F.J.; Phillips, B. Predicting Roof Pressures on a Low-Rise Structure From Freestream Turbulence Using Artificial Neural Networks. Front. Built Environ. 2018, 4, 68. [Google Scholar] [CrossRef]
- Ma, X.; Xu, F.; Chen, B. Interpolation of wind pressures using Gaussian process regression. J. Wind Eng. Ind. Aerodyn. 2019, 188, 30–42. [Google Scholar] [CrossRef]
- Hu, G.; Liu, L.; Tao, D.; Song, J.; Tse, K.; Kwok, K. Deep learning-based investigation of wind pressures on tall building under interference effects. J. Wind Eng. Ind. Aerodyn. 2020, 201, 104138. [Google Scholar] [CrossRef]
- Mallick, M.; Mohanta, A.; Kumar, A.; Patra, K.C. Prediction of Wind-Induced Mean Pressure Coefficients Using GMDH Neural Network. J. Aerosp. Eng. 2020, 33, 04019104. [Google Scholar] [CrossRef]
- Tian, J.; Gurley, K.R.; Diaz, M.T.; Fernández-Cabán, P.L.; Masters, F.J.; Fang, R. Low-rise gable roof buildings pressure prediction using deep neural networks. J. Wind Eng. Ind. Aerodyn. 2019, 196, 104026. [Google Scholar] [CrossRef]
- Chen, F.; Wang, X.; Li, X.; Shu, Z.; Zhou, K. Prediction of wind pressures on tall buildings using wavelet neural network. J. Build. Eng. 2021, 46, 103674. [Google Scholar] [CrossRef]
- Weng, Y.; Paal, S.G. Machine learning-based wind pressure prediction of low-rise non-isolated buildings. Eng. Struct. 2022, 258, 114148. [Google Scholar] [CrossRef]
- Reich, Y.; Barai, S. Evaluating machine learning models for engineering problems. Artif. Intell. Eng. 1999, 13, 257–272. [Google Scholar] [CrossRef]
- Browne, M.W. Cross-Validation Methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538. [Google Scholar]
- Chen, Y.; Kopp, G.A.; Surry, D. Interpolation of pressure time series in an aerodynamic database for low buildings. J. Wind Eng. Ind. Aerodyn. 2003, 91, 737–765. [Google Scholar] [CrossRef]
- English, E.; Fricke, F. The interference index and its prediction using a neural network analysis of wind-tunnel data. J. Wind Eng. Ind. Aerodyn. 1999, 83, 567–575. [Google Scholar] [CrossRef]
- Yoshie, R.; Iizuka, S.; Ito, Y.; Ooka, R.; Okaze, T.; Ohba, M.; Kataoka, H.; Katsuchi, H.; Katsumura, A.; Kikitsu, H.; et al. 13th International Conference on Wind Engineering. Wind Eng. JAWE 2011, 36, 406–428. [Google Scholar] [CrossRef] [Green Version]
- Muehleisen, R.; Patrizi, S. A new parametric equation for the wind pressure coefficient for low-rise buildings. Energy Build. 2013, 57, 245–249. [Google Scholar] [CrossRef]
- Swami, M.V.; Chandra, S. Correlations for pressure distribution on buildings and calculation of natural-ventilation airflow. ASHRAE Trans. 1988, 94, 243–266. [Google Scholar]
- Vrachimi, I. Predicting local wind pressure coefficients for obstructed buildings using machine learning techniques. In Proceedings of the Building Simulation Conference, San Francisco, CA, USA, 14 December 2017; pp. 1–8. [Google Scholar]
- Gavalda, X.; Ferrer-Gener, J.; Kopp, G.A.; Giralt, F.; Galsworthy, J. Simulating pressure coefficients on a circular cylinder at Re= 106 by cognitive classifiers. Comput. Struct. 2009, 87, 838–846. [Google Scholar] [CrossRef]
- Ebtehaj, I.; Bonakdari, H.; Khoshbin, F.; Azimi, H. Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices. Flow Meas. Instrum. 2015, 41, 67–74. [Google Scholar] [CrossRef]
- Amanifard, N.; Nariman-Zadeh, N.; Farahani, M.; Khalkhali, A. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Convers. Manag. 2008, 49, 2588–2594. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial Theory of Complex Systems. IEEE Trans. Syst. Man Cybern. 1971, SMC-1, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Ivakhnenko, A.G.; Ivakhnenko, G.A. Problems of further development of the group method of data handling algorithms. Part I. Pattern Recognit. Image Anal. C/C Raspoznavaniye Obraz. I Anal. Izobr. 2000, 10, 187–194. [Google Scholar]
- Armitt, J. Eigenvector analysis of pressure fluctuations on the West Burton instrumented cooling tower. In Central Electricity Research Laboratories (UK) Internal Report; RD/L/N 114/68; Central Electricity Research Laboratories: Leatherhead, UK, 1968. [Google Scholar]
- Lumley, J.L. Stochastic Tools in Turbulence; Courier Corporation: Chelmsford, MA, USA, 2007. [Google Scholar]
- Azam, S.E.; Mariani, S. Investigation of computational and accuracy issues in POD-based reduced order modeling of dynamic structural systems. Eng. Struct. 2013, 54, 150–167. [Google Scholar] [CrossRef]
- Chatterjee, A. An introduction to the proper orthogonal decomposition. Curr. Sci. 2000, 78, 808–817. [Google Scholar]
- Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper Orthogonal Decomposition and Its Applications—Part I: Theory. J. Sound Vib. 2002, 252, 527–544. [Google Scholar] [CrossRef]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Fan, J.Y. Modified Levenberg-Marquardt algorithm for singular system of nonlinear equations. J. Comput. Math. 2003, 21, 625–636. [Google Scholar]
- Fan, J.; Pan, J. A note on the Levenberg–Marquardt parameter. Appl. Math. Comput. 2009, 207, 351–359. [Google Scholar] [CrossRef]
- Wang, G.; Guo, L.; Duan, H. Wavelet Neural Network Using Multiple Wavelet Functions in Target Threat Assessment. Sci. World J. 2013, 2013, 632437. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-M.; Wang, H.; Mao, J.-X.; Xu, Z.-D.; Zhang, Y.-F. Probabilistic Framework with Bayesian Optimization for Predicting Typhoon-Induced Dynamic Responses of a Long-Span Bridge. J. Struct. Eng. 2021, 147, 04020297. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, Y.; Yu, P.; Wang, T.; Su, S. Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method. J. Shanghai Jiaotong Univ. 2019, 25, 186–192. [Google Scholar] [CrossRef]
- Miyanawala, T.P.; Jaiman, R.K. An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics. arXiv 2017, arXiv:1710.09099. [Google Scholar]
- Ye, S.; Zhang, Z.; Song, X.; Wang, Y.; Chen, Y.; Huang, C. A flow feature detection method for modeling pressure distribution around a cylinder in non-uniform flows by using a convolutional neural network. Sci. Rep. 2020, 10, 4459. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Wang, J.; Hu, G.; Lin, P.; Zhang, C.; Tang, L.; Xu, F. Prediction of wind-induced vibrations of twin circular cylinders based on machine learning. Ocean Eng. 2021, 239, 109868. [Google Scholar] [CrossRef]
- Raissi, M.; Wang, Z.; Triantafyllou, M.S.; Karniadakis, G.E. Deep learning of vortex-induced vibrations. J. Fluid Mech. 2018, 861, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Peeters, R.; Decuyper, J.; de Troyer, T.; Runacres, M.C. Modelling vortex-induced loads using machine learning. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), Virtual, 7–9 September 2020; pp. 1601–1614. [Google Scholar]
- Chang, C.; Shang, N.; Wu, C.; Chen, C. Predicting peak pressures from computed CFD data and artificial neural networks algorithm. J. Chin. Inst. Eng. 2008, 31, 95–103. [Google Scholar] [CrossRef]
- Vesmawala, G.R.; Desai, J.A.; Patil, H.S. Wind pressure coefficients prediction on different span to height ratios domes using artificial neural networks. Asian J. Civ. Eng. 2009, 10, 131–144. [Google Scholar]
- Bairagi, A.K.; Dalui, S.K. Forecasting of Wind Induced Pressure on Setback Building Using Artificial Neural Network. Period. Polytech. Civ. Eng. 2020, 64, 751–763. [Google Scholar] [CrossRef]
- Demuth, H.; Beale, M. Neural Network Toolbox: For Use with MATLAB (Version 4.0); The MathWorks Inc.: Natick, MA, USA, 2004. [Google Scholar]
- Lamberti, G.; Gorlé, C. A multi-fidelity machine learning framework to predict wind loads on buildings. J. Wind Eng. Ind. Aerodyn. 2021, 214, 104647. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Agarap, A.F. Deep Learning Using Rectified Linear Units (ReLU). 2018, pp. 2–8. Available online: http://arxiv.org/abs/1803.08375 (accessed on 1 March 2022).
- Schmidt-Hieber, J. Nonparametric regression using deep neural networks with ReLU activation function. Ann. Stat. 2020, 48, 1875–1897. [Google Scholar] [CrossRef]
- Wu, T.; Kareem, A. Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network. J. Wind Eng. Ind. Aerodyn. 2011, 99, 378–388. [Google Scholar] [CrossRef]
- Abbas, T.; Kavrakov, I.; Morgenthal, G.; Lahmer, T. Prediction of aeroelastic response of bridge decks using artificial neural networks. Comput. Struct. 2020, 231, 106198. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wu, T.; Liu, Z. Nonlinear unsteady bridge aerodynamics: Reduced-order modeling based on deep LSTM networks. J. Wind Eng. Ind. Aerodyn. 2020, 198, 104116. [Google Scholar] [CrossRef]
- Waibel, C.; Zhang, R.; Wortmann, T. Physics Meets Machine Learning: Coupling FFD with Regression Models for Wind Pressure Prediction on High-Rise Facades; Association for Computing Machinery: New York, NY, USA, 2021; Volume 1. [Google Scholar]
- Chen, C.-H.; Wu, J.-C.; Chen, J.-H. Prediction of flutter derivatives by artificial neural networks. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1925–1937. [Google Scholar] [CrossRef]
- Schwartz, J.T.; Von Neumann, J.; Burks, A.W. Theory of Self-Reproducing Automata. Math. Comput. 1967, 21, 745. [Google Scholar] [CrossRef]
- Wolfram, S. Universality and complexity in cellular automata. Phys. D Nonlinear Phenom. 1984, 10, 1–35. [Google Scholar] [CrossRef]
- Galván, I.M.; Isasi, P.; López, J.M.M.; de Miguel, M.A.S. Neural Network Architectures Design by Cellular Automata Evolution; Kluwer Academic Publishers: Norwell, MA, USA, 2000. [Google Scholar]
- Gutiérrez, G.; Sanchis, A.; Isasi, P.; Molina, M. Non-direct encoding method based on cellular automata to design neural network architectures. Comput. Inform. 2005, 24, 225–247. [Google Scholar]
- Oh, B.K.; Glisic, B.; Kim, Y.; Park, H.S. Convolutional neural network-based wind-induced response estimation model for tall buildings. Comput. Civ. Infrastruct. Eng. 2019, 34, 843–858. [Google Scholar] [CrossRef] [Green Version]
- Nikose, T.J.; Sonparote, R.S. Computing dynamic across-wind response of tall buildings using artificial neural network. J. Supercomput. 2018, 76, 3788–3813. [Google Scholar] [CrossRef]
- Castellon, D.F.; Fenerci, A.; Øiseth, O. A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural networks, support vector regression and buffeting theory. J. Wind Eng. Ind. Aerodyn. 2020, 209, 104484. [Google Scholar] [CrossRef]
- Liao, H.; Mei, H.; Hu, G.; Wu, B.; Wang, Q. Machine learning strategy for predicting flutter performance of streamlined box girders. J. Wind Eng. Ind. Aerodyn. 2021, 209, 104493. [Google Scholar] [CrossRef]
- Lin, P.; Hu, G.; Li, C.; Li, L.; Xiao, Y.; Tse, K.; Kwok, K. Machine learning-based prediction of crosswind vibrations of rectangular cylinders. J. Wind Eng. Ind. Aerodyn. 2021, 211, 104549. [Google Scholar] [CrossRef]
- Rizzo, F.; Caracoglia, L. Examination of artificial neural networks to predict wind-induced displacements of cable net roofs. Eng. Struct. 2021, 245, 112956. [Google Scholar] [CrossRef]
- Lin, P.; Ding, F.; Hu, G.; Li, C.; Xiao, Y.; Tse, K.; Kwok, K.; Kareem, A. Machine learning-enabled estimation of crosswind load effect on tall buildings. J. Wind Eng. Ind. Aerodyn. 2021, 220, 104860. [Google Scholar] [CrossRef]
- Nikose, T.J.; Sonparote, R.S. Dynamic along wind response of tall buildings using Artificial Neural Network. Clust. Comput. 2018, 22, 3231–3246. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Hong, J.; Laflamme, S.; Alipour, A. Surrogate models for high performance control systems in wind-excited tall buildings. Appl. Soft Comput. 2020, 90, 106133. [Google Scholar] [CrossRef]
- Qiu, Y.; Yu, R.; San, B.; Li, J. Aerodynamic shape optimization of large-span coal sheds for wind-induced effect mitigation using surrogate models. Eng. Struct. 2022, 253, 113818. [Google Scholar] [CrossRef]
- Sun, L.; Gao, H.; Pan, S.; Wang, J.-X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 2019, 361, 112732. [Google Scholar] [CrossRef] [Green Version]
- Peña, F.L.; Casás, V.D.; Gosset, A.; Duro, R. A surrogate method based on the enhancement of low fidelity computational fluid dynamics approximations by artificial neural networks. Comput. Fluids 2012, 58, 112–119. [Google Scholar] [CrossRef]
- Chen, B.; Wu, T.; Yang, Y.; Yang, Q.; Li, Q.; Kareem, A. Wind effects on a cable-suspended roof: Full-scale measurements and wind tunnel based predictions. J. Wind Eng. Ind. Aerodyn. 2016, 155, 159–173. [Google Scholar] [CrossRef]
- Luo, X.; Kareem, A. Deep convolutional neural networks for uncertainty propagation in random fields. Comput. Civ. Infrastruct. Eng. 2019, 34, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, F.; Caracoglia, L. Artificial Neural Network model to predict the flutter velocity of suspension bridges. Comput. Struct. 2020, 233, 106236. [Google Scholar] [CrossRef]
- Le, V.; Caracoglia, L. A neural network surrogate model for the performance assessment of a vertical structure subjected to non-stationary, tornadic wind loads. Comput. Struct. 2020, 231, 106208. [Google Scholar] [CrossRef]
- Caracoglia, L.; Le, V. A MATLAB-based GUI for Performance-based Tornado Engineering (PBTE) of a Monopole, Vertical Structure with Artificial Neural Networks (ANN). 2020. Available online: https://designsafeci-dev.tacc.utexas.edu/data/browser/public/designsafe.storage.published/PRJ-2772%2FPBTE_ANN_User_manual.pdf (accessed on 14 May 2020).
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Bietry, J.; Delaunay, D.; Conti, E. Comparison of full-scale measurement and computation of wind effects on a cable-stayed bridge. J. Wind Eng. Ind. Aerodyn. 1995, 57, 225–235. [Google Scholar] [CrossRef]
- Macdonald, J. Evaluation of buffeting predictions of a cable-stayed bridge from full-scale measurements. J. Wind Eng. Ind. Aerodyn. 2003, 91, 1465–1483. [Google Scholar] [CrossRef]
- Cheynet, E.; Jakobsen, J.B.; Snæbjörnsson, J. Buffeting response of a suspension bridge in complex terrain. Eng. Struct. 2016, 128, 474–487. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Zhu, L. Buffeting response of long-span cable-supported bridges under skew winds. Part 2: Case study. J. Sound Vib. 2005, 281, 675–697. [Google Scholar] [CrossRef]
- Fenerci, A.; Øiseth, O.; Rønnquist, A. Long-term monitoring of wind field characteristics and dynamic response of a long-span suspension bridge in complex terrain. Eng. Struct. 2017, 147, 269–284. [Google Scholar] [CrossRef]
- Fujisawa, N.; Nakabayashi, T. Neural Network Control of Vortex Shedding from a Circular Cylinder Using Rotational Feedback Oscillations. J. Fluids Struct. 2002, 16, 113–119. [Google Scholar] [CrossRef]
- Barati, R. Application of excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J. Civ. Eng. 2013, 17, 1139–1148. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yun, G.J.; Alavi, A.H. An evolutionary approach for modeling of shear strength of RC deep beams. Mater. Struct. 2013, 46, 2109–2119. [Google Scholar] [CrossRef]
- Mohanta, A.; Patra, K.C. MARS for Prediction of Shear Force and Discharge in Two-Stage Meandering Channel. J. Irrig. Drain. Eng. 2019, 145, 04019016. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Wang, H.; Bai, Y.; Mao, J.-X.; Xu, Y.-C. Bayesian dynamic regression for reconstructing missing data in structural health monitoring. Struct. Health Monit. 2022, 14759217211053779. [Google Scholar] [CrossRef]
- Wan, H.-P.; Ni, Y.-Q. Bayesian multi-task learning methodology for reconstruction of structural health monitoring data. Struct. Health Monit. 2018, 18, 1282–1309. [Google Scholar] [CrossRef] [Green Version]
- Halevy, A.; Norvig, P.; Pereira, F. The Unreasonable Effectiveness of Data. IEEE Intell. Syst. 2009, 24, 8–12. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Khanduri, A.; Bédard, C.; Stathopoulos, T. Modelling wind-induced interference effects using backpropagation neural networks. J. Wind Eng. Ind. Aerodyn. 1997, 72, 71–79. [Google Scholar] [CrossRef]
- Teng, G.; Xiao, J.; He, Y.; Zheng, T.; He, C. Use of group method of data handling for transport energy demand modeling. Energy Sci. Eng. 2017, 5, 302–317. [Google Scholar] [CrossRef]
- Sheela, K.G.; Deepa, S.N. Review on Methods to Fix Number of Hidden Neurons in Neural Networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar] [CrossRef] [Green Version]
- Maier, H.; Dandy, G. The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study. Environ. Model. Softw. 1998, 13, 193–209. [Google Scholar] [CrossRef]
- Wei, S.; Yang, H.; Song, J.; Abbaspour, K.; Xu, Z. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrol. Sci. J. 2013, 58, 374–389. [Google Scholar] [CrossRef]
- Nourani, V.; Alami, M.T.; Aminfar, M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22, 466–472. [Google Scholar] [CrossRef]
- Luo, X.; Kareem, A. Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data. Struct. Saf. 2020, 84, 101918. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.-Q.; Li, M. Wind pressure data reconstruction using neural network techniques: A comparison between BPNN and GRNN. Measurement 2016, 88, 468–476. [Google Scholar] [CrossRef]
- Sallis, P.; Claster, W.; Hernández, S. A machine-learning algorithm for wind gust prediction. Comput. Geosci. 2011, 37, 1337–1344. [Google Scholar] [CrossRef]
- Cao, Q.; Ewing, B.T.; Thompson, M. Forecasting wind speed with recurrent neural networks. Eur. J. Oper. Res. 2012, 221, 148–154. [Google Scholar] [CrossRef]
- Li, F.; Ren, G.; Lee, J. Multi-step wind speed prediction based on turbulence intensity and hybrid deep neural networks. Energy Convers. Manag. 2019, 186, 306–322. [Google Scholar] [CrossRef]
- Türkan, Y.S.; Aydoğmuş, H.Y.; Erdal, H. The prediction of the wind speed at different heights by machine learning methods. Int. J. Optim. Control. Theor. Appl. 2016, 6, 179–187. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Mao, J.-X.; Wan, H.-P. A probabilistic approach for short-term prediction of wind gust speed using ensemble learning. J. Wind Eng. Ind. Aerodyn. 2020, 202, 104198. [Google Scholar] [CrossRef]
- Saavedra-Moreno, B.; Salcedo-Sanz, S.; Carro-Calvo, L.; Gascón-Moreno, J.; Jiménez-Fernández, S.; Prieto, L. Very fast training neural-computation techniques for real measure-correlate-predict wind operations in wind farms. J. Wind Eng. Ind. Aerodyn. 2013, 116, 49–60. [Google Scholar] [CrossRef]
- Kim, B.; Yuvaraj, N.; Preethaa, K.S.; Hu, G.; Lee, D.-E. Wind-Induced Pressure Prediction on Tall Buildings Using Generative Adversarial Imputation Network. Sensors 2021, 21, 2515. [Google Scholar] [CrossRef] [PubMed]
- Snaiki, R.; Wu, T. Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds. J. Wind Eng. Ind. Aerodyn. 2019, 194, 103983. [Google Scholar] [CrossRef]
- Tseng, C.; Jan, C.; Wang, J.; Wang, C. Application of artificial neural networks in typhoon surge forecasting. Ocean Eng. 2007, 34, 1757–1768. [Google Scholar] [CrossRef]
Study No. | Ref. | Surface Type | Source of Data | Input Variables | Output Variables | ML Algorithm |
---|---|---|---|---|---|---|
1 | [80] | Flat roof | Experimental data from BLWT | Sampling time series | Pressure time series | ANN |
2 | [81] | Gable roof | Experimental data from BLWT | x, y, z, and (θ) | ANN | |
3 | [82] | Tall buildings | Previous experimental studies | Sx, Sy and h | Interference effect | RBFNN |
4 | [53] | Flat roof | Experimental data from BLWT | x, y, z, and (θ) | and power spectra of fluctuating wind pressures | ANN |
5 | [83] | Gable roof | Experimental data from BLWT | x, y, z, (θ), and (β) | ANN | |
6 | [84] | High-rise building | Experimental data from BLWT | x, y, z and sampling time series | and pressure time series | POD-ANN |
7 | [85] | Flat, gable and hip roofs and walls | NIST database, and TPU database | D/B, (θ) and (β) | ANN | |
8 | [86] | Flat roof | Experimental data from BLWT | Terrain turbulence | ANN | |
9 | [87] | Flat roof | Experimental data from BLWT | x, y, z, (θ) and sampling time series | and pressure time series | GPR |
10 | [66] | Circular cylinders | Previous experimental studies | Re, Ti and cylinder circumferential angle | DT, RF, and GBRT | |
11 | [88] | High-rise building | TPU database | (Sx and Sy) and (θ) | DT, RF, GANN, and XGBoost | |
12 | [89] | C-shaped building | Experimental data from BLWT | R/D, D/B, d/b and D/H | GMDH-NN | |
13 | [90] | Gable roof and walls | NIST database and DesignSafe-CI database | x, y, z, and (θ) | ANN | |
14 | [91] | Tall buildings | Experimental data from BLWT | (θ) | ANN-GANN-WNN | |
15 | [92] | Gable roof | TPU database | CA, (θ) | and time series | GBDT |
Study No. | Ref. | Surface Type | Source of Data | Input Variables | Output Variables | ML Algorithm |
---|---|---|---|---|---|---|
1 | [123] | Flat roof | CFD simulation | 12 parameters | ANN | |
2 | [124] | Spherical domes | span/height ratio, П and φ | ANN | ||
3 | [131] | Box-girder bridge | Disp., velocities, and accelerations | Flutter and buffeting responses | ANN | |
4 | [132] | Bridges | Response time histories | Motion-induced forces | ANN | |
5 | [125] | Setback building | (θ) | along the face, drag and lift coefficients | ANN | |
6 | [133] | Bridges | Displacements | Deck vibrations | LSTM | |
7 | [120] | Circular Cylinders | M (θ), U and L | Vortex induced vibrations | DT, RF and GBRT | |
8 | [127] | Tall buildings | (θ) | LR-QR-RF-DNN | ||
9 | [134] | Tall building | Different nodes on the surface | RF-GP-LR-KNN-DT-SVR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, K.; Zisis, I.; Moustafa, M.A. Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review. Appl. Sci. 2022, 12, 5232. https://doi.org/10.3390/app12105232
Mostafa K, Zisis I, Moustafa MA. Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review. Applied Sciences. 2022; 12(10):5232. https://doi.org/10.3390/app12105232
Chicago/Turabian StyleMostafa, Karim, Ioannis Zisis, and Mohamed A. Moustafa. 2022. "Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review" Applied Sciences 12, no. 10: 5232. https://doi.org/10.3390/app12105232
APA StyleMostafa, K., Zisis, I., & Moustafa, M. A. (2022). Machine Learning Techniques in Structural Wind Engineering: A State-of-the-Art Review. Applied Sciences, 12(10), 5232. https://doi.org/10.3390/app12105232