Assessment of Bioactive Surfactant Levels in Selected Cereal Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Collection
2.3. Sample Preparation
2.4. Instrumental Analysis
2.5. Statistical Analysis
3. Results
3.1. Validation and Quality Control
- c—mean analyte concentration in the reference material;
- c0—nominal concentration of the analyte in the reference material [45].
3.2. Analysis of Real Samples
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Krafft, M.P.; Riess, J.G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability-Part one. Chemosphere 2015, 129, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbühler, K. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources. Environ. Int. 2014, 70, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Zareitalabad, P.; Siemens, J.; Hamer, M.; Amelung, W. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater—A review on concentrations and distribution coefficients. Chemosphere 2013, 91, 725–732. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Perfluorooctane sulfonate (PFOS), Perfluorooctanoic Acid (PFOA) and Their Salts. Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 653, 1–131. [Google Scholar] [CrossRef]
- Pérez, F.; Nadal, M.; Navarro-Ortega, A.; Fàbrega, F.; Domingo, J.L.; Barceló, D.; Farré, M. Accumulation of perfluoroalkyl substances in human tissues. Environ. Int. 2013, 59, 354–362. [Google Scholar] [CrossRef]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [Green Version]
- McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 2004, 29, 111–142. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation. WHO Technol. Rep. Ser. 2003, 916, 1–200. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAMILY NUTRITION GUIDE by Ann Burges FAO Consultant with Peter Glasauer FAO Food and Nutrition Division. 2004. Available online: https://www.fao.org/3/y5740e/y5740e00.htm (accessed on 11 November 2021).
- Papanikolaou, Y.; Fulgoni, V. Certain Grain Foods Can Be Meaningful Contributors to Nutrient Density in the Diets of U.S. Children and Adolescents: Data from the National Health and Nutrition Examination Survey, 2009–2012. Nutrients 2017, 9, 160. [Google Scholar] [CrossRef]
- Rubio, C.; Gutiérrez, Á.J.; Revert, C.; Reguera, J.I.; Burgos, A.; Hardisson, A. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population. Int. J. Food Sci. Nutr. 2009, 60, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Andersen, L.F.; Blomhoff, R. Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women’s Health Study. Am. J. Clin. Nutr. 2007, 85, 1606–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organisation for Economic Co-Operation Development; Food and Agricultural Organization of the United Nations. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [CrossRef]
- National Center for Nutrition Education. A Healthy Lifestyle Pyramid. National Food and Nutrition Institute 2016, Warsaw, Poland. Available online: https://ncez.pzh.gov.pl/abc-zywienia/piramida-zdrowego-zywienia-i-aktywnosci-fizycznej-dla-osob-doroslych/ (accessed on 11 November 2021).
- Liu, B.; Zhang, H.; Yao, D.; Li, J.; Xie, L.; Wang, X.; Wang, Y.; Liu, G.; Yang, B. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment. Chemosphere 2015, 138, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Rankin, K.; Mabury, S.A.; Jenkins, T.M.; Washington, J.W. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere 2016, 161, 333–341. [Google Scholar] [CrossRef]
- Banzhaf, S.; Filipovic, M.; Lewis, J.; Sparrenbom, C.J.; Barthel, R. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio 2017, 46, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Stroski, K.M.; Luong, K.H.; Challis, J.K.; Chaves-Barquero, L.G.; Hanson, M.L.; Wong, C.S. Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Sci. Total Environ. 2020, 708, 134494. [Google Scholar] [CrossRef]
- Houde, M.; De Silva, A.O.; Muir, D.C.G.; Letcher, R.J. Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review: PFCs in Aquatic Biota. Environ. Sci. Technol. 2011, 45, 7962–7973. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Shi, Y.; Wang, P.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Zhou, Y.; Lu, X.; et al. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park. China Environ. Int. 2017, 106, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Sznajder-Katarzyńska, K.; Surma, M.; Cieślik, E.; Wiczkowski, W. The perfluoroalkyl substances (PFASs) contamination of fruits and vegetables. Food Addit. Contam. Part A 2018, 35, 1776–1786. [Google Scholar] [CrossRef]
- Wen, B.; Li, L.; Zhang, H.; Ma, Y.; Shan, X.-Q.; Zhang, S. Field study on the uptake and translocation of perfluoroalkyl acids (PFAAs) by wheat (Triticum aestivum L.) grown in biosolids-amended soils. Environ. Pollut. 2014, 184, 547–554. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, P.; Lu, Y.; Lu, X.; Zhang, A.; Liu, Z.; Zhang, Y.; Khan, K.; Sarvajayakesavalu, S. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China. Environ. Int. 2020, 135, 105347. [Google Scholar] [CrossRef] [PubMed]
- Gredelj, A.; Nicoletto, C.; Polesello, S.; Ferrario, C.; Valsecchi, S.; Lava, R.; Barausse, A.; Zanon, F.; Palmeri, L.; Guidolin, L.; et al. Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): Growth and developmental toxicity, comparison with growth in soil and bioavailability implications. Sci. Total Environ. 2020, 720, 137333. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Zhou, C.; Chen, L.; Li, Y.; Huang, X.; Wang, S.; Qiu, R.; Tang, C. Accumulation and associated phytotoxicity of novel chlorinated polyfluorinated ether sulfonate in wheat seedlings. Chemosphere 2020, 249, 126447. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, J.; Li, P. Exposure Routes, Bioaccumulation and Toxic Effects of per- and Polyfluoroalkyl Substances (PFASs) on Plants: A Critical Review. Environ. Int. 2022, 158, 106891. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Hamid, H.; Li, L. Role of wastewater treatment plant (WWTP) in environmental cycling of poly- and perfluoroalkyl (PFAS) compounds. Ecocycles 2016, 2, 43–53. [Google Scholar] [CrossRef]
- Sepulvado, J.G.; Blaine, A.C.; Hundal, L.S.; Higgins, C.P. Occurrence and Fate of Perfluorochemicals in Soil Following the Land Application of Municipal Biosolids. Environ. Sci. Technol. 2011, 45, 8106–8112. [Google Scholar] [CrossRef]
- Weber, R.; Watson, A.; Forter, M.; Oliaei, F. Review Article: Persistent organic pollutants and landfills—A review of past experiences and future challenges. Waste Manag. Res. 2011, 29, 107–121. [Google Scholar] [CrossRef]
- Ahrens, L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate. J. Environ. Monit. 2011, 13, 20–31. [Google Scholar] [CrossRef]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef]
- Jiao, X.; Shi, Q.; Gan, J. Uptake, accumulation and metabolism of PFASs in plants and health perspectives: A critical review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2745–2776. [Google Scholar] [CrossRef]
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 1982, 13, 495–504. [Google Scholar] [CrossRef]
- Collins, C.; Fryer, M.; Grosso, A. Plant uptake of non ionic organic chemicals. Environ. Sci. Technol. 2006, 40, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guan, Y.; Qu, B. PFCA uptake and translocation in dominant wheat species (Triticum aestivum L.). Int. J. Phytoremediation 2018, 20, 68–74. [Google Scholar] [CrossRef]
- Bhhatarai, B.; Gramatica, P. Prediction of Aqueous Solubility, Vapor Pressure and Critical Micelle Concentration for Aquatic Partitioning of Perfluorinated Chemicals. Environ. Sci. Technol. 2011, 45, 8120–8128. [Google Scholar] [CrossRef]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Hungerbuehler, K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environ. Int. 2015, 75, 172–179. [Google Scholar] [CrossRef]
- Zhao, P.; Xia, X.; Dong, J.; Xia, N.; Jiang, X.; Li, Y.; Zhu, Y. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Sci. Total Environ. 2016, 568, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Armitage, J.M.; Arnot, J.A.; Wania, F. Potential Role of Phospholipids in Determining the Internal Tissue Distribution of Perfluoroalkyl Acids in Biota. Environ. Sci. Technol. 2012, 46, 12285–12286. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Lian, Y.; Sun, X.; Wu, Y.; Qiao, L.; Wang, M. Source, transportation, bioaccumulation, distribution and food risk assessment of perfluorinated alkyl substances in vegetables: A review. Food Chem. 2021, 349, 129137. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (2010/161/EU) of 17 March 2010 on the Monitoring of Perfluoroalkylated Substances in food. Off. J. Eur. Union 2010, L68, 22–23. [Google Scholar]
- Surma, M.; Gizejewski, Z.; Zieliński, H. Determination of perfluorinated sulfonate and perfluorinated acids in tissues of free-living European beaver (Castor fiber L.) by d-SPE/ micro-UHPLC-MS/MS. Ecotoxicol. Environ. Saf. 2015, 120, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Konieczka, P.; Namieśnik, J.; Zygmunt, B.; Bulska, E.; Świtaj-Zawadka, A.; Naganowska, A.; Kremer, E.; Rompa, M. Niepewność. In Ocena i Kontrola Jakości Wyników Analitycznych, 1st ed.; Konieczka, P., Namieśnik, J., Eds.; PWN: Warsaw, Poland, 2004; Chapter 8.7. [Google Scholar]
- Yu, P.-F.; Xiang, L.; Li, X.-H.; Ding, Z.-R.; Mo, C.-H.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Zhou, D.-M.; Wong, M.-H. Cultivar-Dependent Accumulation and Translocation of Perfluorooctanesulfonate among Lettuce (Lactuca sativa L.) Cultivars Grown on Perfluorooctanesulfonate-Contaminated Soil. J. Agric. Food Chem. 2018, 66, 13096–13106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, H.; Wang, Q.; Chen, H.; Yao, Y.; Zhao, Z.; Alder, A.C. Uptake mechanisms of perfluoroalkyl acids with different carbon chain lengths (C2-C8) by wheat (Triticum acstivnm L.). Sci. Total Environ. 2019, 654, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Wu, Y.; Zhang, H.; Liu, Y.; Hu, X.; Huang, H.; Zhang, S. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ. Pollut. 2016, 216, 682–688. [Google Scholar] [CrossRef]
- Arondel, V.; Vergnolle, C.; Tchang, F.; Kader, J.C. Bifunctional lipid-transfer: Fatty acid-binding proteins in plants. Mol. Cell Biochem. 1990, 98, 49–56. [Google Scholar] [CrossRef]
- Xia, X.; Rabearisoa, A.H.; Jiang, X.; Dai, Z. Bioaccumulation of Perfluoroalkyl Substances by Daphnia magna in Water with Different Types and Concentrations of Protein. Environ. Sci. Technol. 2013, 47, 10955–10963. [Google Scholar] [CrossRef]
- Wang, W.; Rhodes, G.; Ge, J.; Yu, X.; Li, H. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere 2020, 261, 127584. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Sedlacko, E.M.; Hundal, L.S.; Kumar, K.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ. Sci. Technol. 2014, 48, 7858–7865. [Google Scholar] [CrossRef]
- Krippner, J.; Brunn, H.; Falk, S.; Georgii, S.; Schubert, S.; Stahl, T. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays). Chemosphere 2014, 94, 85–90. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.; Su, C. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef]
- Blaine, A.C.; Rich, C.D.; Hundal, L.S.; Lau, C.; Mills, M.A.; Harris, K.M.; Higgins, C.P. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: Field and greenhouse studies. Environ. Sci. Technol. 2013, 47, 14062–14069. [Google Scholar] [CrossRef] [PubMed]
- Lesmeister, L.; Lange, F.T.; Breuer, J.; Biegel-Engler, A.; Giese, E.; Scheurer, M. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants—A review. Sci. Total Environ. 2021, 766, 142640. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. Grain: World Markets and Trade. The USDA Foreign Agricultural Service, Global Market Analysis. 2021. Available online: https://usda.library.cornell.edu/concern/publications/zs25x844t?locale=en (accessed on 11 November 2021).
- Statistics Poland. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-rolnictwa-2021,6,15.html (accessed on 18 October 2021).
- European Food Safety Authority. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018, 16, 5194. [Google Scholar] [CrossRef]
PFAS | a | R2 | LOD [ng/g] | LOQ [ng/g] | Recovery [%] |
---|---|---|---|---|---|
PFBA | 3.552 | 0.998 | 0.018 | 0.061 | 87 |
PFPeA | 4.026 | 0.999 | 0.019 | 0.064 | 89 |
PFHxA | 2.715 | 0.999 | 0.022 | 0.072 | 93 |
PFHpA | 1.662 | 0.999 | 0.014 | 0.047 | 97 |
PFOA | 2.506 | 0.999 | 0.016 | 0.052 | 102 |
PFNA | 1.626 | 0.999 | 0.015 | 0.050 | 94 |
PFDA | 0.965 | 0.999 | 0.018 | 0.061 | 89 |
PFBS | 7.709 | 0.999 | 0.021 | 0.070 | 99 |
PFHxS | 7.786 | 0.997 | 0.013 | 0.043 | 96 |
PFOS | 2.940 | 0.999 | 0.017 | 0.057 | 94 |
Content of PFAS [ng/g] | |||||
---|---|---|---|---|---|
Sample Number | Wheat Flour | Rye Flour | Wheat Bran | Rye Bran | |
PFBA | 1 | 2.15 | 6.16 | 103.27 | 42.18 |
2 | 3.56 | 22.99 | 56.03 | 133.27 | |
3 | 0.88 | 5.93 | 84.18 | 17.80 | |
4 | 2.05 | 45.58 | 152.11 | 64.49 | |
5 | 3.31 | 19.61 | 202.85 | 58.82 | |
range (mean ± SD) | 0.88–3.56 (2.39 ± 1.08) | 6.16–45.58 (20.05 ± 16.22) | 56.03–202.85 (119.68 ± 58.20) | 17.80–133.27 (63.31 ± 43.11) |
Content of PFAS [ng/g] | |||||
---|---|---|---|---|---|
Product | Sample Number | PFBA | PFPeA | PFOA | PFOS |
plain noodles | 1 | 1.63 | <LOQ | <LOQ | <LOQ |
2 | 1.60 | <LOQ | <LOQ | <LOQ | |
3 | 9.32 | <LOQ | <LOQ | <LOQ | |
4 | 2.00 | <LOQ | 0.07 | <LOQ | |
5 | 1.09 | <LOQ | 0.06 | 0.07 | |
range (mean ± SD) | 1.09–9.32 (3.13 ± 3.48) | - | <LOQ–0.07 (0.026 ± 0.04) | <LOQ–0.07 (0.01 ± 0.03) | |
durum noodles | 1 | 2.89 | <LOQ | 0.31 | <LOQ |
2 | 7.77 | <LOQ | 0.43 | 0.09 | |
3 | 3.97 | <LOQ | 0.14 | 6.51 | |
4 | 2.07 | <LOQ | 0.20 | <LOQ | |
5 | 3.37 | <LOQ | 0.16 | 0.100 | |
range (mean ± SD) | 2.07–7.77 (4.01 ± 2.21) | - | 0.14–0.43 (0.25 ± 0.12) | <LOQ–6.51 (1.34 ± 2.89) | |
white rice | 1 | <LOQ | 0.12 | 0.09 | 0.04 |
2 | <LOQ | 0.06 | 0.10 | 0.04 | |
3 | <LOQ | 0.04 | 0.10 | 0.08 | |
4 | <LOQ | 0.06 | 0.08 | 0.03 | |
5 | <LOQ | 0.04 | 0.11 | 0.03 | |
range (mean ± SD) | - | 0.04–0.12 (0.06 ± 0.03) | 0.08–0.11 (0.09 ± 0.01) | 0.03–0.08 (0.04 ± 0.02) | |
brown rice | 1 | <LOQ | <LOQ | 0.06 | <LOQ |
2 | <LOQ | <LOQ | 0.07 | <LOQ | |
3 | <LOQ | <LOQ | 0.06 | <LOQ | |
4 | <LOQ | <LOQ | 0.11 | <LOQ | |
5 | <LOQ | <LOQ | 0.18 | <LOQ | |
range (mean ± SD) | - | - | 0.06–0.18 (0.09 ± 0.05) | - | |
unroasted buckwheat groat | 1 | 0.50 | <LOQ | <LOQ | <LOQ |
2 | 0.48 | <LOQ | <LOQ | <LOQ | |
3 | 0.30 | <LOQ | <LOQ | <LOQ | |
4 | 0.34 | <LOQ | <LOQ | <LOQ | |
5 | 0.35 | <LOQ | <LOQ | <LOQ | |
range (mean ± SD) | 0.30–0.50 (0.39 ± 0.09) | - | - | - | |
roasted buckwheat groat | 1 | <LOQ | <LOQ | 0.09 | <LOQ |
2 | <LOQ | <LOQ | 0.12 | <LOQ | |
3 | <LOQ | <LOQ | 0.10 | <LOQ | |
4 | <LOQ | <LOQ | 0.08 | <LOQ | |
5 | <LOQ | <LOQ | 0.09 | <LOQ | |
range (mean ± SD) | - | - | 0.08–0.12 (0.10 ± 0.02) | - | |
millet groat | 1 | <LOQ | 0.16 | <LOQ | <LOQ |
2 | <LOQ | 0.34 | <LOQ | 8.39 | |
3 | <LOQ | 0.10 | 0.19 | <LOQ | |
4 | <LOQ | 0.12 | 0.15 | <LOQ | |
5 | <LOQ | 0.29 | <LOQ | 0.61 | |
range (mean ± SD) | - | 0.10–0.34 (0.20 ± 0.11) | <LOQ–0.19 (0.07 ± 0.10) | <LOQ–8.39 (1.80 ± 3.69) |
Content of PFAS [ng/g] | |||
---|---|---|---|
Product | Sample Number | PFHxA | PFOA |
boltona bread | 1 | <LOQ | 0.27 |
2 | 0.09 | 0.19 | |
3 | 0.10 | 0.15 | |
4 | 0.11 | 0.12 | |
5 | 0.09 | 0.15 | |
6 | 0.09 | 0.13 | |
7 | 0.08 | 0.12 | |
8 | 0.01 | 0.14 | |
9 | 0.41 | 0.21 | |
10 | 0.44 | 0.23 | |
range (mean ± SD) | <LOQ–0.44 (0.14 ± 0.15) | 0.12–0.27 (0.17 ± 0.05) | |
wholemeal bread | 1 | 0.07 | 0.31 |
2 | 0.13 | 0.29 | |
3 | 0.04 | 0.35 | |
4 | 0.06 | 0.24 | |
5 | 0.05 | 0.29 | |
6 | 0.12 | 0.30 | |
7 | 0.04 | 0.27 | |
8 | 0.05 | 0.23 | |
9 | 0.28 | 0.27 | |
10 | 0.07 | 0.25 | |
range (mean ± SD) | 0.04–0.28 (0.09 ± 0.07) | 0.23–0.35 (0.28 ± 0.04) | |
wheat roll | 1 | <LOQ | 0.16 |
2 | <LOQ | 0.16 | |
3 | <LOQ | 0.25 | |
4 | <LOQ | 0.18 | |
5 | <LOQ | 0.19 | |
6 | <LOQ | 0.15 | |
7 | <LOQ | 0.26 | |
8 | <LOQ | 0.15 | |
9 | <LOQ | 0.18 | |
range (mean ± SD) | - | 0.15–0.26 (0.19 ± 0.04) | |
graham roll | 1 | <LOQ | 0.25 |
2 | <LOQ | 0.19 | |
3 | <LOQ | 0.16 | |
4 | <LOQ | 0.17 | |
5 | <LOQ | 0.16 | |
range (mean ± SD) | - | 0.16–0.25 (0.19 ± 0.04) |
Group/Cluster | PFBA | PFPeA | PFHxA | PFOA | PFOS |
---|---|---|---|---|---|
1 | 16.21 | 0.02 | 0.0002 | 0.07 | 0.25 |
2 | 0.44 | - | 0.10 | 0.25 | 0.004 |
Product | Average Monthly Consumption of Selected Foodstuffs in Households [kg/capita] | ||
---|---|---|---|
2010 | 2018 | 2019 | |
Bread and cereals (total) | 7.05 | 5.48 | 5.36 |
Rice | 0.20 | 0.15 | 0.15 |
Bread | 4.69 | 3.15 | 2.98 |
Pasta and pasta products | 0.37 | 0.38 | 0.40 |
Flour | 0.89 | 0.60 | 0.59 |
Groats and flakes | 0.21 | 0.27 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surma, M.; Sznajder-Katarzyńska, K.; Wiczkowski, W.; Zieliński, H. Assessment of Bioactive Surfactant Levels in Selected Cereal Products. Appl. Sci. 2022, 12, 5242. https://doi.org/10.3390/app12105242
Surma M, Sznajder-Katarzyńska K, Wiczkowski W, Zieliński H. Assessment of Bioactive Surfactant Levels in Selected Cereal Products. Applied Sciences. 2022; 12(10):5242. https://doi.org/10.3390/app12105242
Chicago/Turabian StyleSurma, Magdalena, Katarzyna Sznajder-Katarzyńska, Wiesław Wiczkowski, and Henryk Zieliński. 2022. "Assessment of Bioactive Surfactant Levels in Selected Cereal Products" Applied Sciences 12, no. 10: 5242. https://doi.org/10.3390/app12105242
APA StyleSurma, M., Sznajder-Katarzyńska, K., Wiczkowski, W., & Zieliński, H. (2022). Assessment of Bioactive Surfactant Levels in Selected Cereal Products. Applied Sciences, 12(10), 5242. https://doi.org/10.3390/app12105242