Impact of Flexibility on Vertical Jump, Balance and Speed in Amateur Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolaidis, P.T.; Dellal, A.; Torres-Luque, G.; Ingebrigtsen, J. Determinants of acceleration and maximum speed phase of repeated sprint ability in soccer players: A cross-sectional study. Sci. Sports 2015, 30, e7–e16. [Google Scholar] [CrossRef]
- Stojanovic, M.D.; Ostojic, S.M. Stretching and injury prevention in football: Current perspectives. Res. Sports Med. 2011, 19, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Hadjicharalambous, M.; Christou, M.; Apostolidis, A.; Zaras, N. High Levels of Hamstring Flexibility May Enhance Physical Fitness Performance in Elite Soccer-Players. J. Phys. Fit. Treat. Sports 2020, 7, 555720. [Google Scholar] [CrossRef]
- Yanci, J.; Los Arcos, A.; Mendiguchia, J.; Brughelli, M. Relationships between sprinting, agility, one- and two-leg vertical and horizontal jump in soccer players. Kinesiology 2014, 46, 194–201. [Google Scholar]
- Andrzejewski, M.; Chmura, J.; Pluta, B.; Konarski, J.M. Sprinting activities and distance covered by top level Europa league soccer players. Int. J. Sports Sci. Coach. 2015, 10, 39–50. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Rey, E.; Padrón-Cabo, A.; Barcala-Furelos, R.; Mecías-Calvo, M. Effect of High and Low Flexibility Levels on Physical Fitness and Neuromuscular Properties in Professional Soccer Players. Int. J. Sports Med. 2016, 37, 878–883. [Google Scholar] [CrossRef]
- Kartal, A. The relationships between dynamic balance and sprint, flexibility, strength, jump in junior soccer players. Pedagogy Phys. Cult. Sports 2020, 24, 285–289. [Google Scholar] [CrossRef]
- Wong, D.P.; Hjelde, G.H.; Cheng, C.F.; Ngo, J.K. Use of the RSA/RCOD index to identify training priority in soccer players. J. Strength Cond. Res. 2015, 29, 2787–2793. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Ayala, F.; De Ste Croix, M.; Barbado, D.; Vera-Garcia, F.J. Different neuromuscular parameters influence dynamic balance in male and female football players. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 962–970. [Google Scholar] [CrossRef]
- Bush, M.D.; Archer, D.T.; Hogg, R.; Bradley, P.S. Factors influencing physical and technical variability in the english premier league. Int. J. Sports Physiol. Perform. 2015, 10, 865–872. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Ruiz-Ariza, A.; Moreno del Castillo, R.; Latorre-Román, P. Impact of limited hamstring flexibility on vertical jump, kicking speed, sprint, and agility in young football players. J. Sports Sci. 2015, 33, 1293–1297. [Google Scholar] [CrossRef]
- Rodriguez-Fernandez, A.; Sanchez, J.; Rodriguez-Marroyo, J.A.; Villa, J.G. Effects of seven weeks of static hamstring stretching on flexibility and sprint performance in young soccer players according to their playing position. J. Sports Med. Phys. Fit. 2016, 56, 345–351. [Google Scholar]
- García-Pinillos, F.; Martínez-Amat, A.; Hita-Contreras, F.; Martínez-López, E.J.; Latorre-Román, P.A. Effects of a contrast training program without external load on vertical jump, kicking speed, sprint, and agility of young soccer players. J. Strength Cond. Res. 2014, 28, 2452–2460. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Gollhofer, A.; Granacher, U. Associations Between Measures of Balance and Lower-Extremity Muscle Strength/Power in Healthy Individuals Across the Lifespan: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Bianco, A.; Palma, A.; Marcolin, G. Training the vertical jump to head the ball in soccer. Strength Cond. J. 2012, 34, 80–85. [Google Scholar] [CrossRef]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: New York, NY, USA, 2018. [Google Scholar]
- Noura, J. Available online: https://fisioterapia-desportiva-com-evidencia.webnode.pt/l/ate-onde-estica-o-alongamento/ (accessed on 23 January 2021).
- van Beijsterveldt, A.M.C.; van de Port, I.G.L.; Vereijken, A.J.; Backx, F.J.G. Risk Factors for Hamstring Injuries in Male Soccer Players: A Systematic Review of Prospective Studies. Scand. J. Med. Sci. Sports 2013, 23, 253–262. [Google Scholar] [CrossRef]
- Wollin, M.; Thorborg, K.; Pizzari, T. The acute effect of match play on hamstring strength and lower limb flexibility in elite youth football players. Scand. J. Med. Sci. Sports 2017, 27, 282–288. [Google Scholar] [CrossRef]
- Wan, X.; Qu, F.; Garrett, W.E.; Liu, H.; Yu, B. Relationships among hamstring muscle optimal length and hamstring flexibility and strength. J. Sport Health Sci. 2017, 6, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Van Doormaal, M.C.M.; Van Der Horst, N.; Backx, F.J.G.; Smits, D.W.; Huisstede, B.M.A. No Relationship between Hamstring Flexibility and Hamstring Injuries in Male Amateur Soccer Players. Am. J. Sports Med. 2017, 45, 121–126. [Google Scholar] [CrossRef]
- Thacker, S.B.; Gilchrist, J.; Stroup, D.F.; Kimsey, C.D. The Impact of Stretching on Sports Injury Risk: A Systematic Review of the Literature. Med. Sci. Sports Exerc. 2004, 36, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Opplert, J.; Babault, N. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature. Sport Med. 2018, 48, 299–325. [Google Scholar] [CrossRef] [PubMed]
- Sands, W.A.; McNeal, J.R.; Murray, S.R.; Ramsey, M.W.; Sato, K.; Mizuguchi, S.; Stone, M.H. Stretching and its effects on recovery: A review. Strength Cond. J. 2013, 35, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2015, 41, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Herbert, R.D.; De Noronha, M.A. Stretching to prevent or reduce muscle soreness after exercise. Cochrane Database Syst. Rev. 2007, 4, CD004577. [Google Scholar] [CrossRef]
- Torres, R.; Pinho, F.; Duarte, J.A.; Cabri, J.M.H. Effect of single bout versus repeated bouts of stretching on muscle recovery following eccentric exercise. J. Sci. Med. Sport 2013, 16, 583–588. [Google Scholar] [CrossRef]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef]
- Simpson, C.L.; Kim, B.D.H.; Bourcet, M.R.; Jones, G.R.; Jakobi, J.M. Stretch training induces unequal adaptation in muscle fascicles and thickness in medial and lateral gastrocnemii. Scand. J. Med. Sci. Sports 2017, 27, 1597–1604. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mil-Homens, P. Effect of 8-week high-intensity stretching training on biceps femoris architecture. J. Strength Cond. Res. 2015, 29, 1737–1740. [Google Scholar] [CrossRef]
- Ben, M.; Harvey, L.A. Regular stretch does not increase muscle extensibility: A randomized controlled trial. Scand. J. Med. Sci. Sports 2010, 20, 136–144. [Google Scholar] [CrossRef]
- Afonso, J.; Ramirez-Campillo, R.; Moscão, J.; Rocha, T.; Zacca, R.; Martins, A.; Milheiro, A.A.; Ferreira, J.; Sarmento, H.; Clemente, F.M. Strength Training versus Stretching for Improving Range of Motion: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 427. [Google Scholar] [CrossRef]
- Turki-Belkhiria, L.; Chaouachi, A.; Turki, O.; Chtourou, H.; Chtara, M.; Chamari, K.; Amri, M.; Behm, D.G. Eight weeks of dynamic stretching during warm-ups improves jump power but not repeated or single sprint performance. Eur. J. Sport Sci. 2014, 14, 19–27. [Google Scholar] [CrossRef]
- Ekstrand, J.; Hägglund, M.; Waldén, M. Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 2011, 39, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Barreira, P.; Araújo, J.P.; Ferreira, R.; Loureiro, N. Epidemiology, Risk Factors, and Prevention. In Injuries and Health Problems in Football; Espregueira-Mendes, J., van Dijk, N., Neyret, P., Cohen, M., Della Villa, S., Pereira, H., Oliveira, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 365–373. [Google Scholar] [CrossRef]
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef]
- Racil, G.; Jlid, M.C.; Bouzid, M.S.; Sioud, R.; Khalifa, R.; Amri, M.; Gaied, S.; Coquart, J. Effects of flexibility combined with plyometric exercises vs isolated plyometric or flexibility mode in adolescent male hurdlers. J. Sports Med. Phys. Fit. 2020, 60, 45–52. [Google Scholar] [CrossRef]
- Kirkini, A.; Christou, M.; Apostolidis, A.; Toumpi, E.; Hadjicharalambous, M. High Level of Sit-and-Reach Flexibility Enhances Neuromuscular Explosiveness Performance in Young Elite Soccer Players. Proceedings 2019, 25, 27. [Google Scholar] [CrossRef]
- Saw, A.E.; Main, L.C.; Gastin, P.B. Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review. Br. J. Sports Med. 2016, 50, 281–291. [Google Scholar] [CrossRef]
- Cheng, K.B.; Wang, C.H.; Chen, H.C.; Wu, C.D.; Chiu, H.T. The mechanisms that enable arm motion to enhance vertical jump performance-A simulation study. J. Biomech. 2008, 41, 1847–1854. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar]
- Shaffer, S.W.; Teyhen, D.S.; Lorenson, C.L.; Warren, R.L.; Koreerat, C.M.; Straseske, C.A.; Childs, J.D. Y-balance test: A reliability study involving multiple raters. Mil. Med. 2013, 178, 1264–1270. [Google Scholar] [CrossRef] [Green Version]
- Altmann, S.; Hoffmann, M.; Kurz, G.; Neumann, R.; Woll, A.; Haertel, S. Different Starting Distances Affect 5-m Sprint Times. J. Strength Cond. Res. 2015, 29, 2361–2366. [Google Scholar] [CrossRef]
- Yanci, J.; Calleja-Gonzalez, J.; Cámara, J.; Mejuto, G.; San-Román, J.; Los-Arcos, A. Validity and reliability of a global positioning system to assess 20 m sprint performance in soccer players. Proc. Inst. Mech. Eng. Part. P J. Sport Eng. Technol. 2017, 231, 68–71. [Google Scholar] [CrossRef]
- Clapis, P.A.; Davis, S.M.; Davis, R.O. Reliability of inclinometer and goniometric measurements of hip extension flexibility using the modified Thomas test. Physiother. Theory Pract. 2008, 24, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ayala, F.; Sainz de Baranda, P.; De Ste Croix, M.; Santonja, F. Reproducibility and criterion-related validity of the sit and reach test and toe touch test for estimating hamstring flexibility in recreationally active young adults. Phys. Ther. Sport 2012, 13, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Overmoyer, G.V.; Reiser, R.F. Relationships between lower- extremity flexibility, asymmetries, and the Y balance test. J. Strength Cond. Res. 2015, 29, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
Age, Years | 22.3 ± 3.0 (18–32) |
Height, cm | 175.4 ± 7.4 (159.7–189.7) |
Weight, kg | 74.9 ± 11.6 (50.4–95.4) |
BMI, kg/m2 | 24.2 ± 2.6 (19.8–29.9) |
Lower Limb Real Length (ASIS-medial malleolus), cm | |
Right | 94.5 ± 5.7 (82.1–104.0) |
Left | 94.7 ± 5.8 (82.2–104.0) |
Dominant Side | |
Right | 15 (68.2) |
Left | 7 (31.8) |
Player Position on the Pitch | |
Goalkeeper | 4 (18.2) |
Defender | 6 (27.3) |
Midfielder | 7 (31.8) |
Forward | 5 (22.7) |
Years of Football Practice, years | 13.5 ± 3.0 (5–18) |
Motivation for the Proposed Tasks | 9.0 ± 1.2 (5–10) |
Quality of Sleep the Night before | 6.7 ± 1.7 (4–10) |
Perception of Being in Shape | 6.1 ± 2.1 (1–10) |
Perception of General Well-Being | 7.1 ± 1.2 (5–9) |
Vertical Jump, cm | 32.4 ± 5.9 (20.2–48.7) |
Balance | |
Absolute Reach Distance, cm | |
Anterior with right LL | 68.5 ± 5.7 (58.3–79.5) |
Anterior with left LL | 69.2 ± 6.9 (57.8–82.7) |
Postero-medial with right LL | 77.4 ± 8.3 (60.5–88.5) |
Postero-medial with left LL | 78.7 ± 7.6 (60.4–92.7) |
Postero-lateral with right LL | 80.0 ± 6.8 (58.6–91.9) |
Postero-lateral with left LL | 79.7 ± 8.2 (60.6–92.3) |
Normalized Reach Distance, % | |
Anterior with Right LL | 72.6 ± 6.7 (56.1–82.4) |
Anterior with Left LL | 73.3 ± 8.2 (55.6–84.9) |
Postero-Medial with Right LL | 82.0 ± 8.8 (58.4–91.9) |
Postero-Medial with Left LL | 83.2 ± 7.5 (62.5–92.8) |
Postero-Lateral with Right LL | 84.8 ± 7.7 (71.4–101.7) |
Postero-Lateral with Left LL | 84.3 ± 8.1 (58.2–94.3) |
Composite Reach Distance, % | |
Right side | 84.9 ± 10.4 (59.8–103.4) |
Left side | 85.3 ± 10.3 (56.5–100.9) |
20 m sprint time, s | 3.26 ± 0.19 (2.94–3.67) |
Modified Thomas Test, deg (°) | |
---|---|
Right hip flexion | 4.5 ± 3.9 (0–13) |
Left hip flexion | 4.9 ± 4.4 (0–15) |
Right knee flexion | 67.0 ± 10.1 (42–86) |
Left knee flexion | 67.5 ± 9.8 (48–85) |
Sit-and-Reach Test, cm | 27.2 ± 10.5 (6–44.5) |
Vertical Jump | Composite Reach Distance, Right Side | Composite Reach Distance, Left Side | Speed | |
---|---|---|---|---|
Modified Thomas Test | ||||
Right hip flexion | 0.097 (p = 0.667) | −0.004 (p = 0.986) | −0.026 (p = 0.908) | −0.151 (p = 0.501) |
Left hip flexion | −0.152 (p = 0.498) | −0.016 (p = 0.942) | −0.035 (p = 0.878) | −0.025 (p = 0.912) |
Right knee flexion | −0.311 (p = 0.160) | −0.100 (p = 0.659) | −0.202 (p = 0.366) | 0.360 (p = 0.100) |
Left knee flexion | −0.426 (p = 0.048) | −0.129 (p = 0.567) | −0.203 (p = 0.364) | 0.386 (p = 0.076) |
Sit-and-Reach Test | 0.330 (p = 0.133) | 0.411 (p = 0.040) | 0.364 (p = 0.096) | −0.173 (p = 0.440) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogalho, D.; Gomes, R.; Mendes, R.; Dias, G.; Castro, M.A. Impact of Flexibility on Vertical Jump, Balance and Speed in Amateur Football Players. Appl. Sci. 2022, 12, 5425. https://doi.org/10.3390/app12115425
Bogalho D, Gomes R, Mendes R, Dias G, Castro MA. Impact of Flexibility on Vertical Jump, Balance and Speed in Amateur Football Players. Applied Sciences. 2022; 12(11):5425. https://doi.org/10.3390/app12115425
Chicago/Turabian StyleBogalho, Daniel, Ricardo Gomes, Rui Mendes, Gonçalo Dias, and Maria António Castro. 2022. "Impact of Flexibility on Vertical Jump, Balance and Speed in Amateur Football Players" Applied Sciences 12, no. 11: 5425. https://doi.org/10.3390/app12115425
APA StyleBogalho, D., Gomes, R., Mendes, R., Dias, G., & Castro, M. A. (2022). Impact of Flexibility on Vertical Jump, Balance and Speed in Amateur Football Players. Applied Sciences, 12(11), 5425. https://doi.org/10.3390/app12115425