Comparison of Anthropometric and Physiological Profiles of Hungarian Female Rowers across Age Categories, Rankings, and Stages of Sports Career
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethical Statement
2.3. Procedures, Data Collection and Equipment
2.4. Estimation of Relative Body Fat Content
2.5. Countermovement Jumping
2.6. 2000 m Maximal Rowing Ergometer Test
2.7. Statistical Analysis
3. Results
3.1. Anthropometric and Physiological Characteristics and Motor Performance of Female Rowers in Different Age Groups
3.2. Comparison of Anthropometric and Physiological Characteristics and Motor Performance between Club-Level and International-Level Female Rowers
3.3. Relations between Anthropometric and Physiological Characteristics of the Female Rowing Athletes in Different Stages of the Sports Careers
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jurišić, D.; Donadić, Z.; Lozovina, M. Relation between maximum oxygen uptake and anaerobic threshold, and the rowing ergometer results in senior rowers. Acta Kinesiol. 2014, 8, 55–61. [Google Scholar]
- Shephard, R.J. Science and medicine of rowing: A review. J. Sports Sci. 1998, 16, 603–620. [Google Scholar] [CrossRef]
- Mikulić, P. Anthropometric and physiological profiles of rowers of varying ages and ranks. Kinesiology 2008, 40, 80–88. [Google Scholar]
- Shaharudin, S.; Agrawał, S. Muscle synergies during incremental rowing VO2max test of collegiate rowers and untrained subjects. J. Sports Med. Phys. Fit. 2016, 56, 980–989. [Google Scholar]
- Forjasz, J. Anthropometric typology of male and female rowers using K-means clustering. J. Hum. Kinet 2011, 28, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Neto, P.F.; Silva, L.F.; Matos, D.G.; Jeffreys, I.; Cesario, T.D.; Neto, R.B.; Barbosa, W.D.; Aidar, F.J.; Dantas, P.M.; Cabral, B.G. Equation for analyzing the peak power in aquatic environment: An alternative for olympic rowing athletes. PLoS ONE 2020, 15, e0243157. [Google Scholar] [CrossRef]
- Jürimäe, T.; Perez-Turpin, J.A.; Cortell-Tormo, J.M.; Chinchilla-Mira, I.J.; Cejuela-Anta, R.; Mäestu, J.; Purge, P.; Jürimäe, J. Relationship between rowing ergometer performance and physiological responses to upper and lower exercises in rowers. J. Sci. Med. Sport 2010, 13, 434–437. [Google Scholar] [CrossRef]
- Majumdar, P.; Das, A.; Mandal, M. Physical and strength variables as a predictor of 2000 m rowing ergometer performance in elite rowers. JPES 2017, 17, 2502–2507. [Google Scholar] [CrossRef]
- Penichet-Tomás, A.; Pueo, B.; Jiménez-Olmedo, M. Physical performance indicators in traditional rowing championships. J. Sports Med. Physl. Fit. 2019, 59, 767–773. [Google Scholar] [CrossRef]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Strength testing and training of rowers. Sports Med. 2011, 41, 413–432. [Google Scholar] [CrossRef]
- Maciejewski, H.; Rahmani, A.; Chorin, F.; Lardy, J.; Samozino, P.; Ratel, S. Methodological considerations on the relationship between the 1,500-M rowing ergometer performance and vertical jump in national-level adolescent rowers. J. Strength Cond. Res. 2019, 33, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Kleshnev, V. Power in rowing. In Proceedings of the XVIII Congress of ISBS, Hong Kong, China, 25–30 June 2000; Volume 2, pp. 662–666. [Google Scholar]
- Claessens, A.L.; Bourgois, J.; Pintens, K.; Lefevre, J.; Van Renterghem, B.; Philippaerts, R.; Loos, R.; Janssens, M.; Thomis, M.; Vrijens, J. Body composition and somatotype characteristics of elite female junior rowers in relation to competition level, rowing style and boat type. Hum. Biol. Bp. 2002, 27, 159–165. [Google Scholar]
- Soper, C.; Hume, P.A. Towards an Ideal Rowing Techniquefor Performance. The Contributions from Biomechanics. Sports Med. 2004, 34, 825–848. [Google Scholar] [CrossRef] [PubMed]
- Bourgois, J.; Claessens, L.; Vrijens, J.; Philippaerts, R.; Van Renterghem, B.; Thomis, M.; Janssens, M.; Loos, R.; Lefevre, J. Anthropometric characteristics of elite male juniors. Br. J. Sports Med. 2000, 34, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.E.L.; Sleet, D.A.; Climie, J.F. Summary and applications. Med. Sport 1982, 16, 138–149. [Google Scholar]
- Hebbelinck, M.; Ross, W.D.; Carter, J.E.L. Anthropometric characteristics of female Olympic rowers. Can. J. Appl. Sports Sci. 1980, 5, 255–262. [Google Scholar]
- Skład, M.; Krawczyk, B.; Majle, B. Body build profiles of male and female rowers and kayakers. Biol. Sport 1994, 11, 249–256. [Google Scholar]
- Penichet-Tomas, A.; Pueo, B.; Selles-Perez, S.; Jimenez-Olmedo, J.M. Analysis of Anthropometric and Body Composition Profile in Male and Female Traditional Rowers. Int. J. Environ. Res. Public Health 2021, 18, 7826. [Google Scholar] [CrossRef]
- Peterson, M.D.; Alvar, B.A.; Rhea, M.R. The Contribution of Maximal Force Production to Explosive Movement among Young Collegiate Athletes. J. Strength Cond. Res. 2006, 20, 867–873. [Google Scholar] [CrossRef]
- Kavvoura, A.; Zaras, N.; Stasinaki, A.-N.; Arnaoutis, G.; Methenitis, S.; Terzis, G. The Importance of Lean Body Mass for the Rate of Force Development in Taekwondo Athletes and Track and Field Throwers. J. Funct. Morphol. Kinesiol. 2018, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Schranz, N.; Tomkinson, G.; Olds, T.; Daniell, N. Three-dimensional anthropometric analysis: Differences between elite Australian rowers and the general population. J. Sports Sci. 2010, 28, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A. Strength and Conditioning for Rowing. In Strength and Conditioning for Sports Performance; Jeffreys, I., Moody, J., Eds.; Routledge: Abingdon, UK, 2016; pp. 589–599. [Google Scholar]
- Steinacker, J.M.; Marx, T.R.; Marx, U.; Lormes, W. Oxugen consumption and metabolic strain in rowing ergometer exercise. Eur. J. Appl. Physiol. 1986, 55, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Secher, N. Physiological and Biomechanical Aspects of Rowing. Sports Med. 1993, 15, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, F.C. Applied physiology of rowing. Sports Med. 1984, 1, 303–326. [Google Scholar] [CrossRef]
- Mäestu, J.; Jurimae, J.; Jurimae, T. Monitoring of performance and training in rowing. Sports Med. 2005, 35, 597–617. [Google Scholar] [CrossRef]
- Cunningham, D.A.; Goode, P.B.; Critz, J.B. Cardiorespiratory response to exercise on a rowing and bicycle ergometer. Med. Sci. Sports 1975, 21, 37–43. [Google Scholar] [CrossRef]
- Alföldi, Z.; Borysławski, K.; Ihasz, F.; Soós, I.; Podstawski, R. Differences in the Anthropometric and Physiological Profiles of Hungarian Male Rowers of Various Age Categories, Rankings and Career Lengths: Selection Problems. Front. Physiol 2021, 12, 747781. [Google Scholar] [CrossRef]
- Weiner, J.E.S.S.; Lourie, J.A. (Eds.) Human Biology. A Guide to Field Methods; IBDP Handbook, No. 9; Blackwell Scientific Publishers: Oxford, UK, 1969. [Google Scholar]
- Parízková, J. Total body fat and skinfold thickness in children. Metabolism 1961, 10, 794–807. [Google Scholar]
- McArdle, W.D.; Katch, F.; Katch, V.L. Exercise Physiology Energy, Nutrition, and Human Performance, 7th ed.; Lippincott Williams & Wilkins: New York, NY, USA, 2007. [Google Scholar]
- Ackland, T.R.; Ong, K.B.; Kerr, D.A.; Ridge, B. Morphological characteristic of Olympic sprint canoe and kayak paddlers. J. Sci. Med. Sport 2003, 6, 285–294. [Google Scholar] [CrossRef]
- Iverius, P.H.; Brunzell, J.D. Relationship between lipoprotein lipase activity and plasma sex steroid level in obese women. J. Clin. Investig. 1988, 82, 1106–1112. [Google Scholar] [CrossRef]
- Garrido-Chamorro, R.P.; Sirvent-Belando, J.E.; Gonzalez-Lorenzo, M.; Martín, M.L.; Roche, E. Correlation between body mass index and body composition in elite athletes. J. Sports Med. Phys. Fit. 2009, 49, 278–284. [Google Scholar]
- Mazić, S.; Djelic, M.; Suzic, J.; Suzic, S.; Dekleva, M.; Radovanovic, D.; Šćepanović, L.; Starcevic, V. Overweight in trained subjects—Are we looking at wrong numbers? (Body mass index compared with body fat percentage in estimating overweight in athletes). Gen. Physiol. Biophys. 2009, 28, 200–204. [Google Scholar] [PubMed]
- Newell-Fugate, A.E. The role of sex steroids in white adipose tissue adipocyte function. Reproduction 2017, 153, R133–R149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klusiewicz, A.; Starczewski, M.; Ładyga, M.; Dlugołęcka, B.; Braksator, W.; Mamcarz, A.; Sitkowski, D. Reference values of maximal oxygen uptake for Polish rowers. J. Hum. Kinet 2014, 44, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Secher, N.H.; Vaage, O.; Jackson, R.C. Rowing performance and maximal aerobic power of oarsmen. Scand. J. Sports Sci. 1982, 4, 9–11. [Google Scholar]
- Klusiewicz, A.; Faff, J.; Zdanowicz, R. Diagnostic value of indices derived from specific laboratory tests for rowers. Biol. Sport 1999, 16, 39–50. [Google Scholar]
- Lacour, J.-R.; Messonnier, L.; Bourdin, M. Physiological correlates of performance. Case study of a world-class rower. Eur. J. Appl. Physiol. 2009, 106, 407–413. [Google Scholar] [CrossRef]
- Mejuto, G.; Arratibel, I.; Cámara, J.; Puente, A.; Iturriaga, G.; Calleja-González, J. The effect of a 6-week individual anaerobic thereshold based programme in a traditional rowing crew. Biol. Sport 2012, 29, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Mikulić, P. Maturation to elite status: A six-year physiological case study of a world champion rowing crew. Eur. J. Appl. Physiol. 2011, 111, 2363–2368. [Google Scholar] [CrossRef]
- Messonier, L.; Bourdin, M.; Lacour, J.-R. Influence of age on different determining factors of performance on rowing ergometer. Sci. Sports 1998, 13, 293–294. [Google Scholar]
- Miliward, A. A study on the forces exerted by an oarsman and the effect on boat speed. J. Sport Sci. 1987, 5, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Spinks, W.L. Discriminant analysis of biomechanical differences between novice, good and elite rowers. J. Sport Sci. 1995, 13, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hofmijster, M.J.; Landman, E.H.J.; Smith, R.M. Effect of stroke rate on the distribution of net mechanical power in rowing. J. Sports Sci. 2007, 25, 403–411. [Google Scholar] [CrossRef] [PubMed]
Parameter | Age Category (Years) | Difference | HSD (Post-Hoc) | Cohen’s d | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) 15–16 (N = 36) | (2) 17–18 (N = 26) | (3) 19–22 (N = 8) | ||||||||||||||||
Mean | SD | Min-Max | Mean | SD | Min-Max | Mean | SD | Min-Max | F | p | 1–2 | 2–3 | 1–3 | 1–2 | 2–3 | 1–3 | ||
Body height (cm) | 166.63 | 7.64 | 156.70–187.10 | 170.21 | 6.74 | 160.00–187.40 | 171.58 | 4.14 | 166.20–179–80 | 2.83 | ns | ns | ns | ns | 0.50 | 0.23 | 0.80 | |
Body mass (kg) | 60.70 | 7.08 | 49.20–76.40 | 65.95 | 7.85 | 53.20–84.10 | 71.19 | 6.49 | 63.20–81.50 | 8.43 | <0.001 | 0.019 | ns | 0.001 | 0.69 | 0.71 | 1.53 | |
BFP (%) | 23.81 | 5.73 | 13.90–32.10 | 25.37 | 6.68 | 8.30–35.30 | 30.15 | 5.52 | 19.90–36.20 | 3.59 | 0.033 | ns | ns | 0.026 | 0.25 | 0.78 | 1.12 | |
SMM (%) | 34.15 | 2.88 | 29.00–41.30 | 33.57 | 4.48 | 28.00–47.40 | 31.60 | 4.02 | 28.00–40.90 | 1.58 | ns | ns | ns | ns | 0.15 | 0.46 | 0.72 | |
BMI (kg/m2) | 21.86 | 2.01 | 18.81–26.42 | 22.74 | 2.15 | 18.48–27.19 | 24.17 | 1.84 | 21.12–26.47 | 4.60 | 0.013 | ns | ns | 0.014 | 0.42 | 0.71 | 1.19 | |
Sitting height (cm) | 88.38 | 3.89 | 83.10–100.00 | 90.60 | 3.61 | 85.40–99.90 | 91.01 | 2.01 | 88.00–93.20 | 3.59 | 0.033 | 0.050 | ns | ns | 0.59 | 0.14 | 0.84 | |
Arm span (cm) | 168.22 | 8.08 | 155.40–188.00 | 172.30 | 7.72 | 159.50–192.00 | 176.19 | 5.56 | 168.40–185.00 | 4.43 | 0.016 | ns | ns | 0.028 | 0.51 | 0.57 | 1.14 | |
Lower limb length (cm) | 95.86 | 6.10 | 85.40–112.40 | 98.35 | 5.89 | 87.90–112.50 | 96.01 | 2.85 | 93.90–102.40 | 1.49 | ns | ns | ns | ns | 0.41 | 0.50 | 0.03 | |
BSA (m2) | 1.41 | 0.22 | 1.07–1.94 | 1.56 | 0.23 | 1.21–2.19 | 1.70 | 0.18 | 1.52–2.04 | 7.44 | 0.001 | 0.022 | ns | 0.004 | 0.66 | 0.67 | 1.44 | |
Skin folds (mm) | Biceps | 10.69 | 4.07 | 3.00–22.00 | 9.73 | 3.34 | 5.00–17.00 | 9.88 | 2.85 | 6.00–15.00 | 0.56 | ns | ns | ns | ns | 0.25 | 0.04 | 0.23 |
Triceps | 18.89 | 4.73 | 10.00–29.00 | 18.85 | 4.97 | 10.00–31.00 | 22.75 | 3.45 | 20.00–29.00 | 2.41 | ns | ns | ns | ns | 0.00 | 0.91 | 0.93 | |
Scapula | 14.69 | 4.31 | 8.00–24.00 | 15.27 | 4.41 | 9.00–23.00 | 17.75 | 3.92 | 12.00–24.00 | 1.65 | ns | ns | ns | ns | 0.13 | 0.59 | 0.74 | |
Suprailiac | 14.33 | 4.50 | 6.00–24.00 | 13.15 | 4.40 | 5.00–25.00 | 15.00 | 1.31 | 13.00–17.00 | 0.85 | ns | ns | ns | ns | 0.26 | 0.56 | 0.20 | |
Abdomen | 17.31 | 6.65 | 8.00–36.00 | 15.15 | 3.93 | 7.00–22.00 | 18.00 | 4.75 | 15.00–29.00 | 1.41 | ns | ns | ns | ns | 0.39 | 0.65 | 0.11 | |
Thigh | 24.25 | 7.19 | 10.00–38.00 | 26.42 | 5.69 | 14.00–38.00 | 31.38 | 5.26 | 26.00–41.00 | 4.11 | 0.021 | ns | ns | 0.018 | 0.33 | 0.90 | 1.13 | |
Lower leg | 16.86 | 5.07 | 6.00–25.00 | 16.77 | 4.28 | 10.00–25.00 | 20.13 | 3.23 | 15.00–24.00 | 1.82 | ns | ns | ns | ns | 0.01 | 0.88 | 0.76 | |
Body fat (%) * | 30.41 | 4.10 | 22.90–36.50 | 31.44 | 2.52 | 26.50–36.90 | 33.00 | 2.73 | 27.90–35.60 | 1.68 | ns | ns | ns | ns | 0.30 | 0.59 | 0.74 | |
Peak power (W) | 182.09 | 30.12 | 129.00–246.00 | 212.92 | 27.85 | 155.00–261.00 | 254.75 | 38.24 | 180.00–294.00 | 20.96 | <0.001 | 0.001 | 0.004 | <0.001 | 1.06 | 1.25 | 2.11 | |
RPP (W/kg) | 3.01 | 0.42 | 2.25–3.73 | 3.23 | 0.36 | 2.35–4.01 | 3.57 | 0.37 | 2.79–4.12 | 7.40 | 0.001 | ns | ns | 0.002 | 0.56 | 0.93 | 1.41 | |
Time 2000 m (min) | 8.34 | 0.47 | 7.50–9.30 | 7.90 | 0.36 | 7.35–8.75 | 7.45 | 0.41 | 7.07–8.32 | 17.28 | <0.001 | <0.001 | 0.032 | <0.001 | 1.05 | 1.16 | 2.01 | |
ErVO2 max (mL/kg/min) | 52.52 | 9.98 | 30.59–67.70 | 58.37 | 6.82 | 41.08–73.26 | 63.53 | 6.25 | 49.82–71.91 | 6.81 | 0.002 | 0.034 | ns | 0.005 | 0.68 | 0.78 | 1.32 | |
ErVO2max (L/min) | 3.19 | 0.71 | 1.75–4.45 | 3.85 | 0.53 | 2.58–4.67 | 4.53 | 0.62 | 3.22–5.10 | 17.28 | <0.001 | 0.002 | ns | <0.001 | 1.05 | 1.01 | 1.86 | |
Jump height (cm) | 28.77 | 4.61 | 20.70–37.60 | 27.90 | 3.10 | 21.60–33.70 | 28.39 | 2.34 | 25.00–32.90 | 0.37 | ns | ns | ns | ns | 0.22 | 0.17 | 0.10 | |
Speed max (m/s) | 2.29 | 0.21 | 1.89–2.65 | 2.25 | 0.13 | 1.97–2.49 | 2.29 | 0.11 | 2.09–2.46 | 0.35 | ns | ns | ns | ns | 0.22 | 0.33 | 0.00 | |
Force max (N) | 1282.25 | 194.70 | 950–1916 | 1370.39 | 145.40 | 1124–1690 | 1489.38 | 146.00 | 1319–1708 | 5.39 | 0.007 | ns | ns | 0.009 | 0.51 | 0.81 | 1.20 | |
RPM (W/kg) | 40.42 | 5.94 | 30.10–52.70 | 38.95 | 3.86 | 30.60–45.70 | 38.91 | 3.36 | 32.7–42.4 | 0.76 | ns | ns | ns | ns | 0.29 | 0.01 | 0.31 |
Parameter | Ranking Category | Difference | Cohen’s d | ||||
---|---|---|---|---|---|---|---|
International (N = 11) | Club (N = 25) | ||||||
Mean | SD | Mean | SD | t | p | ||
Scapula skinfold (mm) | 12.36 | 2.77 | 15.72 | 4.50 | −2.28 | 0.029 | 0.89 |
Suprailiac skinfold (mm) | 11.91 | 3.78 | 15.40 | 4.43 | −2.27 | 0.030 | 0.85 |
Abdomen skinfold (mm) | 13.91 | 4.78 | 18.80 | 6.87 | −2.14 | 0.040 | 0.87 |
Thigh skinfold (mm) | 20.00 | 6.47 | 26.12 | 6.79 | −2.53 | 0.016 | 0.79 |
Lower leg skinfold (mm) | 14.00 | 5.42 | 18.17 | 4.41 | −2.41 | 0.021 | 0.83 |
RPP (W/kg) | 3.21 | 0.45 | 2.91 | 0.37 | 2.08 | 0.046 | 0.84 |
Parameter | Ranking Category | Difference | Cohen’s d | ||||
---|---|---|---|---|---|---|---|
International (N = 13) | Club (N = 13) | ||||||
Mean | SD | Mean | SD | t | p | ||
Body height (cm) | 172.89 | 6.94 | 167.53 | 5.55 | 2.17 | 0.040 | 0.85 |
Body mass (kg) | 69.34 | 7.26 | 62.56 | 7.12 | 2.40 | 0.024 | 0.94 |
Arm span (cm) | 176.59 | 6.74 | 168.00 | 6.23 | 3.38 | 0.002 | 0.86 |
Lower limb length (cm) | 101.22 | 5.51 | 95.47 | 4.88 | 2.82 | 0.010 | 0.93 |
BSA (m2) | 1.67 | 0.23 | 1.46 | 0.19 | 2.56 | 0.017 | 0.94 |
Abdomen skinfold (mm) | 13.39 | 2.96 | 16.92 | 4.07 | −2.53 | 0.018 | 1.00 |
Watt 2000m (W) | 223.54 | 23.02 | 200.36 | 28.78 | 2.19 | 0.039 | 0.89 |
Time 2000m (min) | 7.76 | 0.28 | 8.06 | 0.38 | −2.25 | 0.035 | 0.89 |
ErVO2max (L/min) | 4.06 | 0.41 | 3.61 | 0.57 | 2.25 | 0.034 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podstawski, R.; Borysławski, K.; Ihasz, F.; Pomianowski, A.; Wąsik, J.; Gronek, P. Comparison of Anthropometric and Physiological Profiles of Hungarian Female Rowers across Age Categories, Rankings, and Stages of Sports Career. Appl. Sci. 2022, 12, 2649. https://doi.org/10.3390/app12052649
Podstawski R, Borysławski K, Ihasz F, Pomianowski A, Wąsik J, Gronek P. Comparison of Anthropometric and Physiological Profiles of Hungarian Female Rowers across Age Categories, Rankings, and Stages of Sports Career. Applied Sciences. 2022; 12(5):2649. https://doi.org/10.3390/app12052649
Chicago/Turabian StylePodstawski, Robert, Krzysztof Borysławski, Ferenc Ihasz, Andrzej Pomianowski, Jacek Wąsik, and Piotr Gronek. 2022. "Comparison of Anthropometric and Physiological Profiles of Hungarian Female Rowers across Age Categories, Rankings, and Stages of Sports Career" Applied Sciences 12, no. 5: 2649. https://doi.org/10.3390/app12052649
APA StylePodstawski, R., Borysławski, K., Ihasz, F., Pomianowski, A., Wąsik, J., & Gronek, P. (2022). Comparison of Anthropometric and Physiological Profiles of Hungarian Female Rowers across Age Categories, Rankings, and Stages of Sports Career. Applied Sciences, 12(5), 2649. https://doi.org/10.3390/app12052649