Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology
Abstract
:1. Introduction
2. Methods
2.1. Research Apparatus
2.2. Materials
2.3. Structural Analysis
2.4. Scanning Electron Microscopy Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Ammar, Y.; Joyce, S.; Norman, R.; Wang, Y.; Roskilly, A.P. Low grade thermal energy sources and uses from the process industry in the UK. Appl. Energy 2012, 89, 3–20. [Google Scholar] [CrossRef]
- Chihara, K.; Suzuki, M. Air drying by pressure swing adsorption. J. Chem. Eng. Jpn. 1983, 16, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Wankat, P.C. Adsorption engineering: By Motoyuki Suzuki. React. Polym. 1991, 14, 269–270. [Google Scholar] [CrossRef]
- Myat, A.; Thu, K.; Choon, N.K. The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation. Appl. Therm. Eng. 2012, 39, 70–77. [Google Scholar] [CrossRef]
- Mitra, S.; Kumar, P.; Srinivasan, K.; Dutta, P. Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system. Int. J. Refrig. 2016, 67, 174–189. [Google Scholar] [CrossRef]
- Ng, K.C.; Thu, K.; Kim, Y.; Chakraborty, A.; Amy, G. Adsorption desalination: An emerging low-cost thermal desalination method. Desalination 2013, 308, 161–179. [Google Scholar] [CrossRef]
- Thu, K.; Ng, K.C.; Saha, B.B.; Chakraborty, A.; Koyama, S. Operational strategy of adsorption desalination systems. Int. J. Heat Mass Transf. 2009, 52, 1811–1816. [Google Scholar] [CrossRef]
- Aristov, Y.I. Challenging offers of material science for adsorption heat transformation: A review. Appl. Therm. Eng. 2013, 50, 1610–1618. [Google Scholar] [CrossRef]
- Vodianitskaia, P.J.; Soares, J.J.; Melo, H.; Gurgel, J.M. Experimental chiller with silica gel: Adsorption kinetics analysis and performance evaluation. Energy Convers. Manag. 2017, 132, 172–179. [Google Scholar] [CrossRef]
- Chang, W.S.; Wang, C.C.; Shieh, C.C. Experimental study of a solid adsorption cooling system using flat-tube heat exchangers as adsorption bed. Appl. Therm. Eng. 2007, 27, 2195–2199. [Google Scholar] [CrossRef]
- Grabowska, K.; Krzywanski, J.; Nowak, W.; Wesolowska, M. Construction of an innovative adsorbent bed configuration in the adsorption chiller—Selection criteria for effective sorbent-glue pair. Energy 2018, 151, 317–323. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Tian, X.; Liu, D.; Sumathy, K. Progress in silica gel-water adsorption refrigeration technology. Renew. Sustain. Energy Rev. 2014, 30, 85–104. [Google Scholar] [CrossRef]
- Gurgel, J.M.; Klüppel, R.P. Thermal conductivity of hydrated silica-gel. Chem. Eng. J. Biochem. Eng. J. 1996, 61, 133–138. [Google Scholar] [CrossRef]
- Gurgel, J.M.; Filho, L.S.A.; Grenier, P.H.; Meunier, F. Thermal diffusivity and adsorption kinetics of silica-gel/water. Adsorption 2001, 7, 211–219. [Google Scholar] [CrossRef]
- Islam, M.A.; Pal, A.; Saha, B.B. Experimental study on thermophysical and porous properties of silica gels. Int. J. Refrig. 2020, 110, 277–285. [Google Scholar] [CrossRef]
- Pajdak, A.; Walawska, B.; Szymanek, A. The effect of structure modification of sodium compounds on the SO2 and HCl removal efficiency from fumes in the conditions of circulating fluidised bed. Chem. Biochem. Eng. Q. 2017, 31, 261–273. [Google Scholar] [CrossRef]
- Pajdak, A. Purification of flue gases from combustion of solid fuels with sodium sorbents. Przem. Chem. 2015, 1, 160–164. [Google Scholar]
- Rezk, A.; Al-Dadah, R.K.; Mahmoud, S.; Elsayed, A. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Appl. Therm. Eng. 2013, 53, 278–284. [Google Scholar] [CrossRef]
- Demir, H.; Mobedi, M.; Ülkü, S. The use of metal piece additives to enhance heat transfer rate through an unconsolidated adsorbent bed. Int. J. Refrig. 2010, 33, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Kulakowska, A.; Pajdak, A.; Krzywanski, J.; Grabowska, K.; Zylka, A.; Sosnowski, M.; Wesolowska, M.; Sztekler, K.; Nowak, W. Effect of metal and carbon nanotube additives on the thermal diffusivity of a silica-gel-based adsorption bed. Energies 2020, 13, 1391. [Google Scholar] [CrossRef] [Green Version]
- Goldsworthy, M.J. Measurements of water vapour sorption isotherms for RD silica gel, AQSOA-Z01, AQSOA-Z02, AQSOA-Z05 and CECA zeolite 3A. Microporous Mesoporous Mater. 2014, 196, 59–67. [Google Scholar] [CrossRef]
- Wang, Y.; LeVan, M.D. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5a and 13X and silica gel: Pure components. J. Chem. Eng. Data 2009, 54, 2839–2844. [Google Scholar] [CrossRef]
- Gwadera, M.; Kupiec, K.; Marszałek, A. On adsorption of water vapor on silica gel. Czas. Tech. 2015, 2015, 17–27. [Google Scholar]
- Van Den Bulck, E. Isotherm correlation for water vapor on regular-density silica gel. Chem. Eng. Sci. 1990, 45, 1425–1429. [Google Scholar] [CrossRef]
- Chua, H.T.; Ng, K.C.; Chakraborty, A.; Oo, N.M.; Othman, M.A. Adsorption characteristics of silica gel + water systems. J. Chem. Eng. Data 2002, 47, 1177–1181. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, H.; Yang, F.; Zhang, N.; Cao, X. Inorganic composite sorbents for water vapor sorption: A research progress. Renew. Sustain. Energy Rev. 2016, 54, 761–776. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 737–740. [Google Scholar] [CrossRef]
- Reyhani, A.; Mortazavi, S.Z.; Mirershadi, S.; Golikand, A.N.; Moshfegh, A.Z. H2 adsorption mechanism in Mg modified multi-walled carbon nanotubes for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 1919–1926. [Google Scholar] [CrossRef]
- Pajdak, A.; Skoczylas, N. A comparison of the kinetics of hydrogen sorption in a metallic LaNi5 alloy and in multiwall carbon nanotubes. Przem. Chem. 2018, 97, 959–962. [Google Scholar]
- Salam, M.A.; Makki, M.S.I.; Abdelaal, M.Y.A. Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J. Alloys Compd. 2011, 509, 2582–2587. [Google Scholar] [CrossRef]
- Liu, F.; Fan, J.; Wang, S.; Ma, G. Adsorption of natural organic matter analogues by multi-walled carbon nanotubes: Comparison with powdered activated carbon. Chem. Eng. J. 2013, 219, 450–458. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Upadhyayula, V.K.K.; Deng, S.; Mitchell, M.C.; Smith, G.B. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Sci. Total Environ. 2009, 408, 1–13. [Google Scholar] [CrossRef]
- Otero, F.; Martínez, X.; Oller, S.; Salomón, O. Study and prediction of the mechanical performance of a nanotube-reinforced composite. Compos. Struct. 2012, 94, 2920–2930. [Google Scholar] [CrossRef]
- Hermas, A.A.; Qusti, A.H.; Salam, M.A. In situ electropolymerization of conducting polypyrrole/carbon nanotubes composites on stainless steel: Role of carbon nanotubes types. Prog. Org. Coat. 2012, 75, 404–410. [Google Scholar] [CrossRef]
- Satishkumar, B.C.; Doorn, S.K.; Baker, G.A.; Dattelbaum, A.M. Fluorescent single walled carbon nanotube/silica composite materials. ACS Nano 2008, 2, 2283–2290. [Google Scholar] [CrossRef]
- Ramasamy, D.L.; Puhakka, V.; Doshi, B.; Iftekhar, S.; Sillanpää, M. Fabrication of carbon nanotubes reinforced silica composites with improved rare earth elements adsorption performance. Chem. Eng. J. 2019, 365, 291–304. [Google Scholar] [CrossRef]
- Patil, S.P. Enhanced mechanical properties of double-walled carbon nanotubes reinforced silica aerogels: An all-atom simulation study. Scr. Mater. 2021, 196, 113757. [Google Scholar] [CrossRef]
- Bangi, U.K.H.; Kavale, M.S.; Baek, S.; Park, H.H. Synthesis of MWCNTs doped sodium silicate based aerogels by ambient pressure drying. J. Sol-Gel Sci. Technol. 2012, 62, 201–207. [Google Scholar] [CrossRef]
- Wang, B.; Song, K.; Han, Y.; Zhang, T. Synthesis and characterization of multi-walled carbon nanotube doped silica aerogels. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2012, 27, 512–515. [Google Scholar] [CrossRef]
- Mahesh, S.; Joshi, S.C. Thermal conductivity variations with composition of gelatin-silica aerogel-sodium dodecyl sulfate with functionalized multi-walled carbon nanotube doping in their composites. Int. J. Heat Mass Transf. 2015, 87, 606–615. [Google Scholar] [CrossRef]
- Bargozin, H.; Amirkhani, L.; Moghaddas, J.S.; Ahadian, M.M. Synthesis and application of silica aerogel-MWCNT nanocomposites for adsorption of organic pollutants. Sci. Iran. 2010, 17, 122–132. [Google Scholar]
- Sun, T.; Zhuo, Q.; Liu, X.; Sun, Z.; Wu, Z.; Fan, H. Hydrophobic silica aerogel reinforced with carbon nanotube for oils removal. J. Porous Mater. 2014, 21, 967–973. [Google Scholar] [CrossRef]
- Ul Qadir, N.; Said, S.A.M.; Mansour, R. Ben Modeling the performance of a two-bed solar adsorption chiller using a multi-walled carbon nanotube/MIL-100(Fe) composite adsorbent. Renew. Energy 2017, 109, 602–612. [Google Scholar] [CrossRef]
- Sinha, S.; Milani, D.; Luu, M.T.; Abbas, A. Enhancing the performance of a solar-assisted adsorption chiller using advanced composite materials. Comput. Chem. Eng. 2018, 119, 406–424. [Google Scholar] [CrossRef]
- López, A.J.; Rico, A.; Rodríguez, J.; Rams, J. Tough ceramic coatings: Carbon nanotube reinforced silica sol–gel. Appl. Surf. Sci. 2010, 256, 6375–6384. [Google Scholar] [CrossRef]
- Hassan, H.Z.; Mohamad, A.A.; Alyousef, Y.; Al-Ansary, H.A. A review on the equations of state for the working pairs used in adsorption cooling systems. Renew. Sustain. Energy Rev. 2015, 45, 600–609. [Google Scholar] [CrossRef]
- Pyrka, P. Modelowanie trójzlozowej chlodziarki adsorpcyjnej. Zesz. Energ. 2014, 1, 205–216. [Google Scholar]
- Sur, A.; Das, R.K. Review of Technology Used to Improve Heat and Mass Transfer Characteristics of Adsorption Refrigeration System. Int. J. Air-Cond. Refrig. 2016, 24, 1630003. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Ybyraiymkul, D.; Burhan, M.; Oh, S.J.; Ng, K.C. An innovative pressure swing adsorption cycle. AIP Conf. Proc. 2019, 2062, 020057. [Google Scholar]
- Sosnowski, M. Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology. Energies 2019, 12, 4660. [Google Scholar] [CrossRef] [Green Version]
- White, J. Literature Review on Adsorption Cooling Systems. Lat. Am. Caribb. J. Eng. Educ. 2013, 378, 28. [Google Scholar]
- Sultana, T. Effect of Overall Thermal Conductance with Different Mass Allocation on a Two Stage Adsorption Chiller Employing Re-Heat Scheme. Master’s Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2008. [Google Scholar]
- Grabowska, K.; Sosnowski, M.; Krzywanski, J.; Sztekler, K.; Kalawa, W.; Zylka, A.; Nowak, W. The Numerical Comparison of Heat Transfer in a Coated and Fixed Bed of an Adsorption Chiller. J. Therm. Sci. 2018, 27, 421–426. [Google Scholar] [CrossRef]
- Kurniawan, A.; Nasruddin; Rachmat, A. CFD Simulation of Silica Gel as an Adsorbent on Finned Tube Adsorbent Bed. In Proceedings of the 3rd International Tropical Renewable Energy Conference “Sustainalbe Development of Tropical Renewable Energy” (i-TREC 2018), Bali, Indonesia, 6–8 September 2018; Volume 67, p. 01014. [Google Scholar]
- Elsheniti, M.B.; Hassab, M.A.; Attia, A.E. Examination of effects of operating and geometric parameters on the performance of a two-bed adsorption chiller. Appl. Therm. Eng. 2019, 146, 674–687. [Google Scholar] [CrossRef]
- Shabir, F.; Sultan, M.; Miyazaki, T.; Saha, B.B.; Askalany, A.; Ali, I.; Zhou, Y.; Ahmad, R.; Shamshiri, R.R. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew. Sustain. Energy Rev. 2020, 119, 109630. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K.K. Recommendations for the navy. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, W.; Li, M.J.; Li, Z.Y.; Hu, Z.J.; Tao, W.Q. Experimental study on the kinetics of water vapor sorption on the inner surface of silica nano-porous materials. Int. J. Heat Mass Transf. 2014, 78, 947–959. [Google Scholar] [CrossRef]
- Skoczylas, N.; Pajdak, A.; Kudasik, M.; Braga, L.T.P. CH4 and CO2 sorption and diffusion carried out in various temperatures on hard coal samples of various degrees of coalification. J. Nat. Gas Sci. Eng. 2020, 81, 103449. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Zylka, A.; Kulakowska, A.; Czakiert, T.; Sztekler, K.; Wesolowska, M.; Nowak, W. Heat Transfer in Adsorption Chillers with Fluidized Beds of Silica Gel, Zeolite, and Carbon Nanotubes. Heat Transf. Eng. 2021, 43, 172–182. [Google Scholar] [CrossRef]
- Win, K.K.; Nowak, W.; Hitoki, H.; Matsuda, M.; Hasatani, M.; Bis, Z.; Krzywanski, J.; Gajewski, W. Transport velocity of coarse particles in multi-solid fluidized bed. J. Chem. Eng. Jpn. 1995, 28, 535–540. [Google Scholar] [CrossRef] [Green Version]
Sample | Symbol | Granulation [µm] |
---|---|---|
Silica Gel, Sigma Aldrich | SG1a | 100–160 |
SG1b | 200–250 | |
SG1c | 350–400 | |
Silica Gel, Fuji Silysia Chemical | SG2a | 100–160 |
SG2b | 200–250 | |
SG2c | 350–400 | |
Carbon Nanotubes, 3d-nano | CNT | Øin = 2–6 nm |
Øout = 5–20 nm | ||
l = 10 µm |
Parameter | Unit | SG1 | SG2 | CNT |
---|---|---|---|---|
BET Surface Area () | m2/g | 713.3 ± 10.9 | 706.8 ± 9.2 | 186.6 ± 0.9 |
Langmuir Surface Area () | m2/g | 1126.7 ± 8.8 | 1334.4 ± 31.3 | 429.9 ± 24.5 |
Volume in Pores () | cm3/g | 0.151 * | 0.146 * | 0.022 ** |
Total Volume in Pores () | cm3/g | 0.380 * | 0.441 * | 0.237 ** |
Area in Pores () | m2/g | 0.3 * | 4.4 * | 0 ** |
Total Area in Pores () | m2/g | 435.2 * | 467.3 * | 99.4 ** |
Standard Deviation of Fit | cm3/g STP | 0.80 | 1.08 | 1.05 |
Characteristic Energy | kJ/mol | 14.9 | 12.7 | 20.6 |
Parameter | Unit | SG1 | SG2 | SG1/CNT | SG2/CNT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temp. | K | 298 | 313 | 333 | 298 | 313 | 333 | 298 | 313 | 333 | 298 | 313 | 333 |
wt.% | 33 | 34.5 | 34.4 | 35 | 32.8 | 29.6 | 29.2 | 30.8 | 23.8 | 31.1 | 26.8 | 23.8 | |
m2/g | 584.8 ± 19.6 | 673.5 ± 77.4 | 560.5 ± 17.8 | 458.9 ± 18.5 | 358.8 ± 20.2 | 362.9 ± 38.9 | 840.7 ± 154 | 997.4 ± 198 | 640.8 ± 116 | 742.7 ± 135 | 517.1 ± 90.2 | 424.8 ± 85.5 | |
- | 5.17 | 4.11 | 6.12 | 5.95 | 5.44 | 5.06 | 1.46 | 1.39 | 0.92 | 0.66 | 1.45 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajdak, A.; Kulakowska, A.; Liu, J.; Berent, K.; Kudasik, M.; Krzywanski, J.; Kalawa, W.; Sztekler, K.; Skoczylas, N. Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology. Appl. Sci. 2022, 12, 5644. https://doi.org/10.3390/app12115644
Pajdak A, Kulakowska A, Liu J, Berent K, Kudasik M, Krzywanski J, Kalawa W, Sztekler K, Skoczylas N. Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology. Applied Sciences. 2022; 12(11):5644. https://doi.org/10.3390/app12115644
Chicago/Turabian StylePajdak, Anna, Anna Kulakowska, Jinfeng Liu, Katarzyna Berent, Mateusz Kudasik, Jaroslaw Krzywanski, Wojciech Kalawa, Karol Sztekler, and Norbert Skoczylas. 2022. "Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology" Applied Sciences 12, no. 11: 5644. https://doi.org/10.3390/app12115644
APA StylePajdak, A., Kulakowska, A., Liu, J., Berent, K., Kudasik, M., Krzywanski, J., Kalawa, W., Sztekler, K., & Skoczylas, N. (2022). Accumulation and Emission of Water Vapor by Silica Gel Enriched with Carbon Nanotubes CNT-Potential Applications in Adsorption Cooling and Desalination Technology. Applied Sciences, 12(11), 5644. https://doi.org/10.3390/app12115644