Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. CRT-EPiggy19 Data and Experiments
2.2. Meshless Model Based on Smoothed Particle Hydrodynamics
2.3. Electrophysiological Model
2.4. Left Bundle Branch Block Simulation with Personalized Parameters
- 1 region ().
- 2 regions ().
- 3 regions ().
- 4 regions ().
- 5 regions ().
- 6 regions ().
- 21 regions ().
2.5. Simulation of Cardiac Resynchronization Therapy
2.6. Evaluation Metrics and Experiments
3. Results
3.1. Training Data
3.1.1. Left Bundle Branch Block Simulations
3.1.2. Cardiac Resynchronization Therapy Simulations
3.2. Testing Data
3.2.1. Left Bundle Branch Block Simulations
3.2.2. Cardiac Resynchronization Therapy Simulations
4. Discussion
4.1. Benchmark Analysis of Meshless and Finite-Element Method Solutions on Training Data
4.2. Validation of Meshless Method Results on Testing Data
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Appendix A
RMSE (ms) | Pig 1 | Pig 2 | Pig 3 (*) | |||
---|---|---|---|---|---|---|
LBBB | CRT | LBBB | CRT | LBBB | CRT | |
RV Epi | 5.6 | 8.73 | 7.95 | 7.04 | 5.6 | 4.3 |
LV Epi | 5.9 | 7.37 | 10.17 | 8.53 | 4 | 6.2 |
LV Endo | 9.1 | 7.45 | 9.76 | 7.48 | 6.4 | 9.7 |
RMSE (ms) | RV Epi | LV Epi | LV Endo | |
---|---|---|---|---|
Pig 4 | LBBB | 3.9 | 5.47 | 6.42 |
CRT () | 17.14 | 11.6 | 10.71 | |
CRT () | 17.23 | 14.56 | 13.16 | |
CRT () | 20.67 | 13.4 | 11.86 | |
CRT () | 15.46 | 13.17 | 12.33 | |
Pig 5 | LBBB | 4.92 | 7.68 | 13.4 |
CRT () | 10.98 | 16.26 | 17.85 | |
CRT () | 10.98 | 14.74 | 19.27 | |
CRT () | 20.87 | 10.82 | 14.73 | |
CRT () | 19.82 | 21.88 | 20.8 | |
Pig 6 (*) | LBBB | 5.97 | 6.11 | 5.7 |
CRT () | 11.94 | 12.21 | 7.98 | |
CRT () | 12.03 | 18.95 | 14.01 | |
CRT () | 5.91 | 14.48 | 12.7 | |
CRT () | 13.78 | 12.85 | 11.93 |
References
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Cardiovascular Diseases (CVDs). June 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 11 May 2022).
- Zhang, F.; Wang, Y. Left ventricular mechanical dyssynchrony in patients with heart failure: What is the next step? J. Nucl. Cardiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [PubMed]
- Scherbak, D.; Hicks, G.J. Left Bundle Branch Block (LBBB). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Strauss, D.G.; Selvester, R.H.; Wagner, G.S. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am. J. Cardiol. 2011, 107, 927–934. [Google Scholar] [CrossRef]
- Healey, J.S.; Hohnloser, S.H.; Exner, D.V.; Birnie, D.H.; Parkash, R.; Connolly, S.J.; Krahn, A.D.; Simpson, C.S.; Thibault, B.; Basta, M.; et al. Cardiac resynchronization therapy in patients with permanent atrial fibrillation: Results from the Resynchronization for Ambulatory Heart Failure Trial (RAFT). Circ. Heart Fail. 2012, 5, 566–570. [Google Scholar] [CrossRef] [Green Version]
- Stockburger, M.; Moss, A.J.; Klein, H.U.; Zareba, W.; Goldenberg, I.; Biton, Y.; McNitt, S.; Kutyifa, V. Sustained clinical benefit of cardiac resynchronization therapy in non-LBBB patients with prolonged PR-interval: MADIT-CRT long-term follow-up. Clin. Res. Cardiol. 2016, 105, 944–952. [Google Scholar] [CrossRef]
- Bozyel, S.; Ağır, A.A.; Şahin, T.; Çelikyurt, U.; Aktaş, M.; Argan, O.; Yılmaz, İ.; Karaüzüm, K.; Derviş, E.; Vural, A.; et al. Improvement in left ventricular intrinsic dyssynchrony with cardiac resynchronization therapy. Anatol. J. Cardiol. 2017, 17, 298. [Google Scholar] [CrossRef]
- Moss, A.J.; Brown, M.W.; Cannom, D.S.; Daubert, J.P.; Estes, M.; Foster, E.; Greenberg, H.M.; Hall, W.J.; Higgins, S.L.; Klein, H.; et al. Multicenter automatic defibrillator implantation trial–cardiac resynchronization therapy (MADIT-CRT): Design and clinical protocol. Ann. Noninvasive Electrocardiol. 2005, 10, 34–43. [Google Scholar] [CrossRef]
- Daubert, C.; Behar, N.; Martins, R.P.; Mabo, P.; Leclercq, C. Avoiding non-responders to cardiac resynchronization therapy: A practical guide. Eur. Heart J. 2017, 38, 1463–1472. [Google Scholar] [CrossRef]
- Sieniewicz, B.J.; Gould, J.; Porter, B.; Sidhu, B.S.; Teall, T.; Webb, J.; Carr-White, G.; Rinaldi, C.A. Understanding non-response to cardiac resynchronisation therapy: Common problems and potential solutions. Heart Fail. Rev. 2019, 24, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, A.P.; Behar, J.M.; Claridge, S.; Jackson, T.; Sohal, M.; Rinaldi, C.A. Multisite pacing for cardiac resynchronization therapy: Promise and pitfalls. Curr. Cardiol. Rep. 2016, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shan, Q. Discussion of LBBP synchronization effects in HF patients with LBBB and comparison with BiV-CRT. Heart Fail. Rev. 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Niederer, S.A.; Lumens, J.; Trayanova, N.A. Computational models in cardiology. Nat. Rev. Cardiol. 2019, 16, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Costa, C.M.; Strocchi, M.; Rinaldi, C.A.; Niederer, S.A. Computational modeling for cardiac resynchronization therapy. J. Cardiovasc. Transl. Res. 2018, 11, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Choy, J.S.; Raissi, F.; Kassab, G.S.; Lee, L.C. Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model. Comput. Biol. Med. 2022, 141, 105050. [Google Scholar] [CrossRef]
- Owashi, K.; Taconné, M.; Courtial, N.; Simon, A.; Garreau, M.; Hernandez, A.; Donal, E.; Le Rolle, V.; Galli, E. Desynchronization Strain Patterns and Contractility in Left Bundle Branch Block through Computer Model Simulation. J. Cardiovasc. Dev. Dis. 2022, 9, 53. [Google Scholar] [CrossRef]
- Albatat, M.; Bergsland, J.; Arevalo, H.; Odland, H.H.; Wall, S.; Sundnes, J.; Balasingham, I. Multisite pacing and myocardial scars: A computational study. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 248–260. [Google Scholar] [CrossRef]
- Carpio, E.F.; Gomez, J.F.; Sebastian, R.; Lopez-Perez, A.; Castellanos, E.; Almendral, J.; Ferrero, J.M.; Trenor, B. Optimization of lead placement in the right ventricle during cardiac resynchronization therapy. A simulation study. Front. Physiol. 2019, 10, 74. [Google Scholar] [CrossRef]
- Oomen, P.J.; Phung, T.K.N.; Weinberg, S.H.; Bilchick, K.C.; Holmes, J.W. A rapid electromechanical model to predict reverse remodeling following cardiac resynchronization therapy. Biomech. Model. Mechanobiol. 2022, 21, 231–247. [Google Scholar] [CrossRef]
- Camara, O.; Sermesant, M.; Lamata, P.; Wang, L.; Pop, M.; Relan, J.; De Craene, M.; Delingette, H.; Liu, H.; Niederer, S.; et al. Inter-model consistency and complementarity: Learning from ex vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology. Prog. Biophys. Mol. Biol. 2011, 107, 122–133. [Google Scholar] [CrossRef]
- Pop, M.; Sermesant, M.; Lepiller, D.; Truong, M.; McVeigh, E.; Crystal, E.; Dick, A.; Delingette, H.; Ayache, N.; Wright, G. Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study. Med. Image Anal. 2009, 13, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Rigol, M.; Solanes, N.; Fernandez-Armenta, J.; Silva, E.; Doltra, A.; Duchateau, N.; Barcelo, A.; Gabrielli, L.; Bijnens, B.; Berruezo, A.; et al. Development of a swine model of left bundle branch block for experimental studies of cardiac resynchronization therapy. J. Cardiovasc. Transl. Res. 2013, 6, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto Iglesias, D.; Duchateau, N.; Kostantyn Butakov, C.; Andreu, D.; Fernandez-Armenta, J.; Bijnens, B.; Berruezo, A.; Sitges, M.; Camara, O. Quantitative Analysis of Electro-Anatomical Maps: Application to an Experimental Model of Left Bundle Branch Block/Cardiac Resynchronization Therapy. IEEE J. Transl. Eng. Health Med. 2017, 5, 1900215. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, W.A.; Gizzi, A.; Sack, K.L.; Guccione, J.M.; Hurtado, D.E. In-silico study of the cardiac arrhythmogenic potential of biomaterial injection therapy. Sci. Rep. 2020, 10, 12990. [Google Scholar]
- Khamzin, S.; Dokuchaev, A.; Solovyova, O. Prediction of CRT Response on Personalized Computer Models. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Berlin/Heidelberg, Germany, 2019; pp. 352–363. [Google Scholar]
- Cedilnik, N.; Sermesant, M. Eikonal Model Personalisation using Invasive Data to Predict Cardiac Resynchronisation Therapy Electrophysiological Response. In Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gomez, J.F.; Trenor, B.; Sebastian, R. Prediction of CRT Activation Sequence by Personalization of Biventricular Models from Electroanatomical Maps. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Berlin/Heidelberg, Germany, 2019; pp. 342–351. [Google Scholar]
- Ten Tusscher, K.H.; Panfilov, A.V. Alternans and spiral breakup in a human ventricular tissue model. Am. J. -Physiol.-Heart Circ. Physiol. 2006, 291, H1088–H1100. [Google Scholar] [CrossRef]
- Lluch, E.; Mihalef, V.; Vizitiu, A.; Passerini, T.; Audigier, C.; Halperin, H.; Haschemi, M.; Ashikaga, H.; Mansi, T. Is Personalized Computational Model of Atrial Fibrillation Really Personalized? Circulation 2021, 144, A11195. [Google Scholar] [CrossRef]
- Chabiniok, R.; Wang, V.Y.; Hadjicharalambous, M.; Asner, L.; Lee, J.; Sermesant, M.; Kuhl, E.; Young, A.A.; Moireau, P.; Nash, M.P.; et al. Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics. Interface Focus 2016, 6, 20150083. [Google Scholar] [CrossRef]
- Zhang, L.; Ademiloye, A.; Liew, K. Meshfree and particle methods in biomechanics: Prospects and challenges. Arch. Comput. Methods Eng. 2019, 26, 1547–1576. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Xu, L.; Yu, X.; Wong, K.C.; Liu, H.; Zhuang, L.; Shi, P. A meshfree representation for cardiac medical image computing. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z. Smoothed particle hydrodynamics (SPH) for modeling fluid-nstructure interactions. Sci. China Phys. Mech. Astron. 2019, 62, 984701. [Google Scholar] [CrossRef]
- Wong, K.C.; Wang, L.; Zhang, H.; Liu, H.; Shi, P. Meshfree implementation of individualized active cardiac dynamics. Comput. Med. Imaging Graph. 2010, 34, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Lluch, È.; De Craene, M.; Bijnens, B.; Sermesant, M.; Noailly, J.; Camara, O.; Morales, H.G. Breaking the state of the heart: Meshless model for cardiac mechanics. Biomech. Model. Mechanobiol. 2019, 18, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Lluch, È.; Camara, O.; Doste, R.; Bijnens, B.; De Craene, M.; Sermesant, M.; Wang, V.Y.; Nash, M.P.; Morales, H.G. Calibration of a fully coupled electromechanical meshless computational model of the heart with experimental data. Comput. Methods Appl. Mech. Eng. 2020, 364, 112869. [Google Scholar] [CrossRef]
- Mountris, K.A.; Pueyo, E. Cardiac electrophysiology meshfree modeling through the mixed collocation method. arXiv 2021, arXiv:2110.06671. [Google Scholar]
- O’Hara, T.; Virág, L.; Varró, A.; Rudy, Y. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput. Biol. 2011, 7, e1002061. [Google Scholar] [CrossRef] [Green Version]
- Doste, R.; Soto-Iglesias, D.; Bernardino, G.; Alcaine, A.; Sebastian, R.; Giffard-Roisin, S.; Sermesant, M.; Berruezo, A.; Sanchez-Quintana, D.; Camara, O. A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. Int. J. Numer. Methods Biomed. Eng. 2019, 35, e3185. [Google Scholar] [CrossRef] [Green Version]
- Lluch, E.; Doste, R.; Giffard-Roisin, S.; This, A.; Sermesant, M.; Camara, O.; de Craene, M.; Morales, H.G. Smoothed Particle Hydrodynamics for Electrophysiological Modeling: An Alternative to Finite Element Methods. FIMH 2017. In Proceedings of the FIMH 2017—9th International Conference on Functional Imaging and Modelling of the Heart, Toronto, ON, Canada, 6 June 2017; pp. 333–343. [Google Scholar]
- Mitchell, C.C.; Schaeffer, D.G. A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 2003, 65, 767–793. [Google Scholar] [CrossRef] [Green Version]
- Talbot, H.; Marchesseau, S.; Duriez, C.; Sermesant, M.; Cotin, S.; Delingette, H. Towards an interactive electromechanical model of the heart. Interface Focus 2013, 3, 20120091. [Google Scholar] [CrossRef] [Green Version]
- Camara, O.; Pashaei, A.; Sebastian, R.; Frangi, A. Personalization of Fast Conduction Purkinje System in Eikonal-Based Electrophysiological Models with Optical Mapping Data; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6364 LNCS. [Google Scholar]
- Cárdenes, R.; Sebastian, R.; Soto-Iglesias, D.; Berruezo, A.; Camara, O. Estimation of Purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics. Med. Image Anal. 2015, 24, 52–62. [Google Scholar] [CrossRef]
- Viceconti, M.; Pappalardo, F.; Rodriguez, B.; Horner, M.; Bischoff, J.; Musuamba Tshinanu, F. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 2021, 185, 120–127. [Google Scholar] [CrossRef]
- Barber, F.; Langfield, P.; Lozano, M.; Garcia-Fernandez, I.; Duchateau, J.; Hocini, M.; Haissaguerre, M.; Vigmond, E.; Sebastian, R. Estimation of Personalized Minimal Purkinje Systems from Human Electro-Anatomical Maps. IEEE Trans. Med. Imaging 2021, 40, 2182–2194. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Perez, A.; Sebastian, R.; Izquierdo, M.; Ruiz, R.; Bishop, M.; Ferrero, J.M. Personalized cardiac computational models: From clinical data to simulation of infarct-related ventricular tachycardia. Front. Physiol. 2019, 10, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimony, A.; Eisenberg, M.J.; Filion, K.B.; Amit, G. Beneficial effects of right ventricular non-apical vs. apical pacing: A systematic review and meta-analysis of randomized-controlled trials. Europace 2012, 14, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, C.; Sadoul, N.; Mont, L.; Defaye, P.; Osca, J.; Mouton, E.; Isnard, R.; Habib, G.; Zamorano, J.; Derumeaux, G.; et al. Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: The SEPTAL CRT Study. Eur. Heart J. 2016, 37, 473–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntjens, P.R.; Walmsley, J.; Ploux, S.; Bordachar, P.; Prinzen, F.W.; Delhaas, T.; Lumens, J. Influence of left ventricular lead position relative to scar location on response to cardiac resynchronization therapy: A model study. Europace 2014, 16, iv62–iv68. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.P.; Dahal, K.; Dominic, P.; Sangha, R.S. Clinical and echocardiographic response of apical vs. nonapical right ventricular lead position in CRT: A meta-analysis. J. Arrhythmia 2018, 34, 185–194. [Google Scholar] [CrossRef]
- Brabham, W.W.; Gold, M.R. The role of AV and VV optimization for CRT. J. Arrhythmia 2013, 29, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Treml, L.M.; Bartocci, E.; Gizzi, A. Modeling and analysis of cardiac hybrid cellular automata via GPU-accelerated Monte Carlo simulation. Mathematics 2021, 9, 164. [Google Scholar] [CrossRef]
- Shahi, S.; Fenton, F.H.; Cherry, E.M. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study. Mach. Learn. Appl. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Barone, A.; Gizzi, A.; Fenton, F.; Filippi, S.; Veneziani, A. Experimental validation of a variational data assimilation procedure for estimating space-dependent cardiac conductivities. Comput. Methods Appl. Mech. Eng. 2020, 358, 112615. [Google Scholar] [CrossRef]
- Barone, A.; Carlino, M.G.; Gizzi, A.; Perotto, S.; Veneziani, A. Efficient estimation of cardiac conductivities: A proper generalized decomposition approach. J. Comput. Phys. 2020, 423, 109810. [Google Scholar] [CrossRef]
- Fresca, S.; Manzoni, A.; Dedè, L.; Quarteroni, A. Deep learning-based reduced order models in cardiac electrophysiology. PLoS ONE 2020, 15, e0239416. [Google Scholar] [CrossRef] [PubMed]
- Kaboudian, A.; Cherry, E.M.; Fenton, F.H. Real-Time Interactive Simulations of Complex Ionic Cardiac Cell Models in 2D and 3D Heart Structures with GPUs on Personal Computers. In 2021 Computing in Cardiology (CinC); IEEE: Piscataway, NJ, USA, 2021; Volume 48, pp. 1–4. [Google Scholar]
- Santiago, A.; Aguado-Sierra, J.; Zavala-Aké, M.; Doste-Beltran, R.; Gómez, S.; Arís, R.; Cajas, J.C.; Casoni, E.; Vázquez, M. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3140. [Google Scholar] [CrossRef] [PubMed]
Pig 1 | Pig 2 | Pig 3 (*) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EAM | SPH-Sim | EAM | SPH-Sim | EAM | SPH-Sim | |||||||
LBBB | CRT | LBBB | CRT | LBBB | CRT | LBBB | CRT | LBBB | CRT | LBBB | CRT | |
TAT (ms) | 72.0 | 70.0 | 70.0 | 66.0 | 66.0 | 45.0 | 78.0 | 39.0 | 59.0 | 35.0 | 49.7 | 46.0 |
LAT RMSE (ms) | 6.8 | 7.9 | 9.4 | 7.7 | 5.1 | 6.6 | ||||||
17 IVD (ms) | 18.0 | 7.3 | 18.6 | 11.4 | 19.8 | −3.3 | 14.3 | 0.0 | 17.7 | −12.5 | 16.9 | −4.8 |
LV-TD (ms) | 7.2 | 0.0 | 9.0 | 2.0 | 9.9 | −6.6 | 13.0 | 0.4 | 11.8 | −5.2 | 18.4 | 0.6 |
Recovery (%) | −2.6 | −8.0 | 47.7 | 69.6 | 342.9 | 185.0 |
SPH-Based | FEM-Based | ||||||||
---|---|---|---|---|---|---|---|---|---|
RV endo | RV epi | LV endo | LV epi | Scar | Average heart tissue | PK | Average heart tissue | PK | |
Ischemic | 1.53 | 1.40 | 1.36 | 1.62 | 0.49 | 1.30 | 1.69 | 1.78 | 1.30 |
Non-ischemic | 0.83 | 0.65 | 0.63 | 0.51 | - | 0.65 | 2.40 | 0.50 | 2.60 |
Pig 4 | Pig 5 | Pig 6 (*) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EAM | SPH-Sim | EAM | SPH-Sim | EAM | SPH-Sim | |||||||
LBBB | CRT | LBBB | CRT () | LBBB | CRT | LBBB | CRT () | LBBB | CRT | LBBB | CRT () | |
TAT (ms) | 61 | 59 | 56 | 36.8 | 92 | 70 | 76 | 55 | 67 | 49 | 73.7 | 47 |
LAT RMSE (ms) | 5.1 | 13.2 | 8.2 | 14.6 | 5.9 | 10.7 | ||||||
IVD (ms) | 19.61 | −9.04 | 14.7 | 0.5 | 25.58 | 7.83 | 21.5 | 1.2 | 12.75 | 2.63 | 18.3 | 0.8 |
LV-TD (ms) | 16.55 | −12.95 | 5.8 | −0.7 | 32.68 | −8.45 | 9.8 | -0.3 | 14.22 | −1.97 | 6.8 | 0.6 |
Recovery (%) | 17.95 | 100.84 | 46.09 | 68.2 | 637 | 666 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albors, C.; Lluch, È.; Gomez, J.F.; Cedilnik, N.; Mountris, K.A.; Mansi, T.; Khamzin, S.; Dokuchaev, A.; Solovyova, O.; Pueyo, E.; et al. Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data. Appl. Sci. 2022, 12, 6438. https://doi.org/10.3390/app12136438
Albors C, Lluch È, Gomez JF, Cedilnik N, Mountris KA, Mansi T, Khamzin S, Dokuchaev A, Solovyova O, Pueyo E, et al. Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data. Applied Sciences. 2022; 12(13):6438. https://doi.org/10.3390/app12136438
Chicago/Turabian StyleAlbors, Carlos, Èric Lluch, Juan Francisco Gomez, Nicolas Cedilnik, Konstantinos A. Mountris, Tommaso Mansi, Svyatoslav Khamzin, Arsenii Dokuchaev, Olga Solovyova, Esther Pueyo, and et al. 2022. "Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data" Applied Sciences 12, no. 13: 6438. https://doi.org/10.3390/app12136438
APA StyleAlbors, C., Lluch, È., Gomez, J. F., Cedilnik, N., Mountris, K. A., Mansi, T., Khamzin, S., Dokuchaev, A., Solovyova, O., Pueyo, E., Sermesant, M., Sebastian, R., Morales, H. G., & Camara, O. (2022). Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data. Applied Sciences, 12(13), 6438. https://doi.org/10.3390/app12136438