A GA and SVM Classification Model for Pine Wilt Disease Detection Using UAV-Based Hyperspectral Imagery
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. UAV-Based HI
2.3. Tree Crown Segmentation from HI
2.4. Infection Stage Categorization of Pine Tree
3. Method
3.1. Spectral Feature Extraction
3.2. Coding Spectral Features in GA
3.3. GA-SVM Classification Model
3.4. Evaluation for the Classification Model
4. Results
4.1. Experiment Environment and Dataset
4.2. Optimal Spectral Feature Selection
4.3. Classification Model Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, N.; Jeon, H.W.; Mannaa, M.; Jeong, S.-I.; Kim, J.; Kim, J.; Lee, C.; Park, A.R.; Kim, J.-C.; Seo, Y.-S. Induction of resistance against pine wilt disease caused by Bursaphelenchus xylophilus using selected pine endophytic bacteria. Plant Pathol. 2019, 68, 434–444. [Google Scholar] [CrossRef]
- Rohdewald, P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharmacol. Ther. 2002, 40, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Jeon, M.H.; Hwang, H.J.; Park, M.R.; Lee, S.H.; Kim, S.G.; Kim, M. Antioxidant activity and analysis of proanthocyanidins from pine (Pinus densiflora) needles. Nutr. Res. Pract. 2011, 5, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363. [Google Scholar] [CrossRef]
- Ikegami, M.; Jenkins, T.A.R. Estimate global risks of a forest disease under current and future climates using species distribution model and simple thermal model–Pine Wilt disease as a model case. For. Ecol. Manag. 2018, 409, 343–352. [Google Scholar] [CrossRef]
- Ichihara, Y.; Fukuda, K.; Suzuki, K. Early symptom development and histological changes associated with migration of Bursaphelenchus xylophilus in seedling tissues of Pinus thunbergii. Plant Dis. 2000, 84, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures. Sci. Silvae Sin. 2019, 55, 1–10. [Google Scholar]
- Sun, H.; Zhou, Y.; Li, X.; Zhang, Y.; Wang, Y. Occurrence of major forest pests in 2020 and prediction of occurrence trend in 2021 in China. For. Pest Dis. 2021, 40, 45–48. [Google Scholar]
- Syifa, M.; Park, S.J.; Lee, C.W. Detection of the pine wilt disease tree candidates for drone remote sensing using artificial intelligence techniques. Engineering 2020, 6, 919–926. [Google Scholar] [CrossRef]
- Zhao, B.G.; Futai, K.; Sutherland, J.R.; Takeuchi, Y. (Eds.) Pine Wilt Disease; Springer: Tokyo, Japan, 2008. [Google Scholar]
- Zhang, S.; Huang, J.; Hanan, J.; Qin, L. A hyperspectral GA-PLSR model for prediction of pine wilt disease. Multimed. Tools Appl. 2020, 79, 16645–16661. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Qin, J.; Tang, X.-D.; Wang, Y.-J.; Huang, J.-L.; Song, Q.-L.; Min, J.-Y. Spectral characteristics and evaluation model of Pinus Massoniana suffering from Bursaphelenchus Xylophilus disease. Spectrosc. Spectr. Anal. 2019, 39, 865–872. [Google Scholar]
- Kim, S.-R.; Lee, W.-K.; Lim, C.-H.; Kim, M.; Kafatos, M.C.; Lee, S.-H.; Lee, S.-S. Hyperspectral analysis of pine wilt disease to determine an optimal detection index. Forests 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Ren, L.; Luo, Y. Early detection of pine wilt disease in Pinus tabuliformis in North China using a field portable spectrometer and UAV-based hyperspectral imagery. For. Ecosyst. 2021, 8, 44. [Google Scholar] [CrossRef]
- Zhan, Z.; Yu, L.; Li, Z.; Ren, L.; Gao, B.; Wang, L.; Luo, Y. Combining GF-2 and Sentinel-2 images to detect tree mortality caused by red turpentine beetle during the early outbreak stage in North China. Forests 2020, 11, 172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 2083. [Google Scholar] [CrossRef]
- Li, X.; Tong, T.; Luo, T.; Wang, J.; Rao, Y.; Li, L.; Jin, D.; Wu, D.; Huang, H. Retrieving the Infected Area of Pine Wilt Disease-Disturbed Pine Forests from Medium-Resolution Satellite Images Using the Stochastic Radiative Transfer Theory. Remote Sens. 2022, 14, 1526. [Google Scholar] [CrossRef]
- Santoso, H.; Tani, H.; Wang, X. A simple method for detection and counting of oil palm trees using high-resolution multispectral satellite imagery. Int. J. Remote Sens. 2016, 37, 5122–5134. [Google Scholar] [CrossRef]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Ren, W.; Wu, D.; Qin, L. Preliminary Study on Data Collecting and Processing of Unmanned Airship Low Altitude Hyperspectral Remote Sensing. Ecol. Environ. Monit. Three Gorges 2016, 1, 52–57. [Google Scholar]
- Wu, W.; Zhang, Z.; Zheng, L.; Han, C.; Wang, X.; Xu, J.; Wang, X. Research progress on the early monitoring of pine wilt disease using hyperspectral techniques. Sensors 2020, 20, 3729. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, R.; Lee, J. A Deep Learning-Based Generalized System for Detecting Pine Wilt Disease Using RGB-Based UAV Images. Remote Sens. 2021, 14, 150. [Google Scholar] [CrossRef]
- Qin, L.; Wang, X.; Jiang, J.; Yang, X.; Ke, D.; Li, H.; Wang, D. Use hyperspectral remote sensing technique to monitoring pine wood nomatode disease preliminary. In Hyperspectral Remote Sensing Applications and Environmental Monitoring and Safety Testing Technology; SPIE: Bellingham, WA, USA, 2016; Volume 10156, pp. 410–414. [Google Scholar]
- Huang, H.H.; Ma, X.H.; Huang, H.Y.; Zhou, Y.F.; Zhang, W.; Huang, Y.H. A preliminary study on monitoring of dead pine trees caused by pine wilt disease with fixed-wing unmanned aerial vehicle. J. Environ. Entomol. 2018, 40, 306–313. [Google Scholar]
- Li, H.; Xu, H.H.; Zheng, H.Y.; Chen, X.Y. Monitoring technology of pine wilt disease based on UAV remote sensing image. J. Chin. Agric. Mech. 2020, 41, 170–175. [Google Scholar]
- Abdel-Rahman, E.M.; Mutanga, O.; Adam, E.; Ismail, R. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 48–59. [Google Scholar] [CrossRef]
- Iordache, M.D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A machine learning approach to detecting pine wilt disease using airborne spectral imagery. Remote Sens. 2020, 12, 2280. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Park, Y.-S.; Jeoung, C.-S.; Choi, W.-I.; Kim, Y.-K.; Jung, I.-H.; Shigesada, N.; Kawasaki, K.; Takasu, F.; Chon, T.-S. Spatially explicit model applied to pine wilt disease dispersal based on host plant infestation. Ecol. Model. 2017, 353, 54–62. [Google Scholar] [CrossRef]
- Yu, X.Z.; Wang, R.R.; Chen, W.J. Forest canopy segmentation by UAV remote sensing images using an improved watershed algorithm. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2018, 47, 428–434. [Google Scholar]
- Xu, H.C.; Luo, Y.Q.; Zhang, T.T.; Shi, Y.J. Changes of reflectance spectra of pine needles in different stage after being infected by pine wood nematode. Spectrosc. Spectr. Anal. 2011, 31, 1352–1356. [Google Scholar]
- Dos Santos, C.S.S.; de Vasconcelos, M.W. Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode. Eur. J. Plant Pathol. 2012, 132, 407–418. [Google Scholar] [CrossRef]
- Mullen, K. Early Detection of Mountain Pine Beetle Damage in Ponderosa Pine Forests of the Black Hills Using Hyperspectral and WorldView-2 Data. Master’s Thesis, Minnesota State University, Mankato, MN, USA, 2016; pp. 58–60. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Nijat, K.; Shi, Q.; Wang, J.; Rukeya, S.; Ilyas, N.; Gulnur, I. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 208–216. [Google Scholar]
- Wu, N.; Liu, J.; Yan, R. Using spectral feature parameters to estimate the chlorophyll content of Chinese fir under disease stress. Plant Prot. 2012, 38, 72–76. [Google Scholar]
- Huang, M.; Gong, J.; Li, S.; Zhang, B.; Hao, Q. Study on pine wilt disease hyper-spectral time series and sensitive features. Remote Sens. Technol. Appl. 2013, 27, 954–960. [Google Scholar]
- Guo, T.; Han, L.; He, L.; Yang, X. A GA-based feature selection and parameter optimization for linear support higher-order tensor machine. Neurocomputing 2014, 144, 408–416. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Tu, B.; Wang, J.; Kang, X.; Zhang, G.; Ou, X.; Guo, L. KNN-based representation of superpixels for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4032–4047. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, L.; Zhang, X. Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Remote Sens. Environ. 2020, 247, 111938. [Google Scholar] [CrossRef]
Variables | Description | Formula |
---|---|---|
Rgreen | Reflectance at green peak [34] | MAX ρ(510:580) |
SRgreen | Total reflectance in GR [35] | SUM ρ(510:580) |
Rred | Reflectance at red valley [34] | MIN ρ(620:680) |
SRred | Total reflectance in RR [35] | SUM ρ(620:680) |
RRE | Reflectance at RR peak [35] | MAX ρ(680:760) |
SRRE | Total reflectance in RR [35] | SUM ρ(680:760) |
RNIR | Reflectance at NIR peak [35] | MAX ρ(780:1000) |
SRNIR | Total reflectance in NIR [35] | SUM ρ(780:1000) |
Dgreen | Max first-order derivative of the reflectance in GR [36] | MAX ρ’ (510:580) |
SDgreen | Total first-order derivative of the reflectance in GR [36] | SUM ρ’ (510:580) |
Dred | Max first-order derivative of the reflectance in RR [36] | MAX ρ’ (620:680) |
SDred | Total first-order derivative of the reflectance in RR [36] | SUM ρ’ (620:680) |
DRE | Max first-order derivative of the reflectance in RE [37] | MAX ρ’ (680:760) |
SDRE | Total first-order derivative of the reflectance in RE [37] | SUM ρ’ (680:760) |
DNIR | Max first-order derivative of the reflectance in NIR [37] | MAX ρ’ (780:1000) |
SDNIR | Total first-order derivative of the reflectance in NIR [37] | SUM ρ’ (780:1000) |
Name | Formula | Description |
---|---|---|
TP | True positive | True value is positive, and the number that the model considers is positive. |
FN | False negative | True value is positive, and the number that the model considers is negative. |
FP | False positive | True value is negative, and the number the model considers is positive. |
TN | False negative | True value is negative, and the number that the model considers is negative. |
User accuracy (UA) | TP/(TP + FP) | The proportion of the correctly predicted number to the total number of a class. |
Producer accuracy (PA) | TP/(TP + FN) | The proportion of the correctly predicted number to the positive number of a class. |
Overall accuracy (OA) | (TP + TN)/(TP + TN + FP + FN) | The proportion of total correctly predicted number to the total observed number. |
Kappa coefficient (KAPPA) | (Po − Pe)/(1 − Pe), where Po = OA, Pe = ((TN + FN) × (TN + FP) + (FP + TP) × (FN + TP))/(TN + TP + FN + FP)^2 | The kappa coefficient is used for consistency testing, and the calculation of the kappa coefficient is based on the confusion matrix. |
Model | Healthy Stage | Early Stage | Middle Stage | Serious Stage | ||||
---|---|---|---|---|---|---|---|---|
PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | |
KNN | 0 | NAN | 100 | 62.5 | 91.67 | 84.62 | 0 | NAN |
RF | 0 | 0 | 80 | 50 | 83.33 | 100 | 100 | 100 |
SVM | 100 | 100 | 100 | 71.43 | 83.33 | 90.91 | 50 | 100 |
GA and SVM | 100 | 100 | 100 | 100 | 91.67 | 100 | 100 | 66.67 |
Model | OA(%) | KAPPA |
---|---|---|
KNN | 76.19 | 0.5714 |
RF | 76.19 | 0.6182 |
SVM | 85.71 | 0.7649 |
GA and SVM | 95.24 | 0.9234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Huang, H.; Huang, Y.; Cheng, D.; Huang, J. A GA and SVM Classification Model for Pine Wilt Disease Detection Using UAV-Based Hyperspectral Imagery. Appl. Sci. 2022, 12, 6676. https://doi.org/10.3390/app12136676
Zhang S, Huang H, Huang Y, Cheng D, Huang J. A GA and SVM Classification Model for Pine Wilt Disease Detection Using UAV-Based Hyperspectral Imagery. Applied Sciences. 2022; 12(13):6676. https://doi.org/10.3390/app12136676
Chicago/Turabian StyleZhang, Sulan, Hong Huang, Yunbiao Huang, Dongdong Cheng, and Jinlong Huang. 2022. "A GA and SVM Classification Model for Pine Wilt Disease Detection Using UAV-Based Hyperspectral Imagery" Applied Sciences 12, no. 13: 6676. https://doi.org/10.3390/app12136676
APA StyleZhang, S., Huang, H., Huang, Y., Cheng, D., & Huang, J. (2022). A GA and SVM Classification Model for Pine Wilt Disease Detection Using UAV-Based Hyperspectral Imagery. Applied Sciences, 12(13), 6676. https://doi.org/10.3390/app12136676