Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir
Abstract
:1. Introduction
2. Data, Methods, and Techniques
2.1. Remote Sensing Methods for a Chlorophyll Content
2.2. Area of Study
2.3. Data for a Remote Sensing Research
2.4. Spectral Reflectance Curves
2.5. Model
3. Results
3.1. Model Parameters for Chlorophyll a
3.2. Maps of Chlorophyll a Concentrations for Lake Dobczyce
3.3. Models Parameters for Turbidity
3.4. Maps of Turbidity for Lake Dobczyce
4. Discussion
5. Conclusions
- The large number of different models used to calculate chlorophyll a concentrations and turbidity in water means that there is no one universal model for use with different bodies of water.
- Models developed as the product of the reflectance powers (after logarithm) undergo statistical analysis to eliminate irrelevant components. This procedure simplifies the model. The final model may take into account the reflectances of many wavelengths, which are then eliminated by the statistical test at the significance level, e.g., 0.05 (Student’s t-distribution).
- The specific physic-chemical and biological composition of the water in a given reservoir may result in significant differences between the spectral curves for individual water components.
- Shallow reservoirs require corrections for the bottom reflectance. It is impossible to predict in advance at what depth and for which wavelengths the bottom reflectance is already negligible. The analysis of satellite images helps to determine whether the bottom reflectance at a given wavelength is insignificant (poor bottom visibility); this simplifies the model.
- It is difficult or even impossible to use a combination of physical equations (type (7)–(9)) to calculate the concentration of chlorophyll a based on the reflectance recorded by the satellite; such reflectance is a mix of the chlorophyll a reflectance and the reflectance of many other substances present in the water. The authors could not find parameters of the model types (7)–(9) for just one wavelength and the known turbidity and maintain a satisfactory accuracy. Therefore, they proposed model (14) that took into account the reflectance for different wavelengths.
- Reflectances corresponding to the middle wave range 665, 705, 740, and 842 nm have been used in the model of chlorophyll concentration, while the effect of lake bottom interaction is associated with wavelengths 665 and 705 nm.
- Reflectances corresponding to the middle wave range 705, 740, and 783 nm have been used in the model of turbidity, while the effect of lake bottom interaction is associated with wavelength 705 nm.
- The described models use the reflectances normalized to the conditions prevailing at a specific moment over the reference surface.
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th ed.; APHA American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Aminot, A.; Rey, F. Standard Procedure for the Determination of Chlorophyll a by Spectroscopic Methods; International Council for the Exploration of the Sea: Copenhagen, Denmark, 2000; ISSN 0903-2606. Available online: https://www.researchgate.net/publication/242385183_Standard_procedure_for_the_determination_of_chlorophyll_a_by_spectroscopic_methods (accessed on 29 June 2022).
- Miller, H.M.; Sexton, N.R.; Koontz, L.; Loomis, J.; Koontz, S.R.; Hermans, C. USGS Open-File Report 2011-1031: The Users, Uses, and Value of Landsat and Other Moderate-Resolution Satellite Imagery in the United States—Executive Report. Available online: https://pubs.usgs.gov/of/2011/1031/ (accessed on 29 June 2022).
- Allan, M.G.; Hamilton, D.P.; Hicks, B.J.; Brabyn, L. Landsat Remote Sensing of Chlorophyll a Concentrations in Central North Island Lakes of New Zealand. Int. J. Remote Sens. 2011, 32, 2037–2055. [Google Scholar] [CrossRef]
- Ventura, D.L.T.; Martinez, J.-M.; de Attayde, J.L.; Martins, E.S.P.R.; Brandini, N.; Moreira, L.S. Long-Term Series of Chlorophyll-a Concentration in Brazilian Semiarid Lakes from Modis Imagery. Water 2022, 14, 400. [Google Scholar] [CrossRef]
- Albert, A.; Gege, P. Inversion of Irradiance and Remote Sensing Reflectance in Shallow Water between 400 and 800 Nm for Calculations of Water and Bottom Properties. Appl. Opt. 2006, 45, 2331–2343. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery; DLR Report DLR-IB 565–601: Wessling, Germany, 2005. [Google Scholar]
- Song, K. Water Quality Monitoring Using Landsat Themate Mapper Data with Empirical Algorithms in Chagan Lake, China. J. Appl. Remote Sens. 2011, 5, 053506. [Google Scholar] [CrossRef]
- Lim, J.; Choi, M. Assessment of Water Quality Based on Landsat 8 Operational Land Imager Associated with Human Activities in Korea. Environ. Monit. Assess. 2015, 187, 384. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A Four-Band Semi-Analytical Model for Estimating Chlorophyll a in Highly Turbid Lakes: The Case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Kudela, R.M.; Palacios, S.L.; Austerberry, D.C.; Accorsi, E.K.; Guild, L.S.; Torres-Perez, J. Application of Hyperspectral Remote Sensing to Cyanobacterial Blooms in Inland Waters. Remote Sens. Environ. 2015, 167, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep Learning-Based Water Quality Estimation and Anomaly Detection Using Landsat-8/Sentinel-2 Virtual Constellation and Cloud Computing. GISci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring Inland Water Quality Using Remote Sensing: Potential and Limitations of Spectral Indices, Bio-Optical Simulations, Machine Learning, and Cloud Computing. Earth-Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2006; ISSN 1098-6030. Available online: https://www.ioccg.org/reports/report5.pdf (accessed on 1 January 2022).
- Li, Y.; Shang, S.; Zhang, C.; Ma, X.; Huang, L.; Wu, J.; Zeng, Y. Remote Sensing of Algal Blooms Using a Turbidity-Free Function for near-Infrared and Red Signals. Chin. Sci. Bull. 2006, 51, 464–471. [Google Scholar] [CrossRef]
- Schalles, J.F.; Schiebe, F.R.; Starks, P.J.; Troeger, W.W. Estimation of Algal and Suspended Sediment Loads (singly and Combined) Using Hyperspectral Sensors and Integrated Mesocosm Experiments. In Proceedings of the Fourth International Conference on Remote Sensing for Marine and Coastal Environments, Orlando, FL, USA, 17–19 March 1997; pp. 111–120. [Google Scholar]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Lodhi, M.A.; Rundquist, D.C.; Han, L.; Kuzila, M.S. The Potential for Remote Sensing of Loess Soils Suspended in Surface Waters. J. Am. Water Resour. Assoc. 1997, 33, 111–117. [Google Scholar] [CrossRef]
- Alparslan, E.; Aydöner, C.; Tufekci, V.; Tüfekci, H. Water Quality Assessment at Ömerli Dam Using Remote Sensing Techniques. Environ. Monit. Assess. 2007, 135, 391. [Google Scholar] [CrossRef] [PubMed]
- Johan, F.B.; Jafri, M.Z.B.; San, L.H.; Omar, W.M.W.; Ho, T.C. Chlorophyll a Concentration of Fresh Water Phytoplankton Analysed by Algorithmic Based Spectroscopy. J. Phys. Conf. Ser. 2018, 1083, 012015. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A Simple Semi-Analytical Model for Remote Estimation of Chlorophyll-a in Turbid Waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.-X.; Li, D.-J.; Zhu, W.-J.; Salama, M.S. Medium Resolution Imaging Spectrometer (MERIS) Estimation of Chlorophyll-a Concentration in the Turbid Sediment-Laden Waters of the Changjiang (Yangtze) Estuary. Int. J. Remote Sens. 2010, 31, 4635–4650. [Google Scholar] [CrossRef]
- Son, S.; Wang, M. Water Quality Properties Derived from VIIRS Measurements in the Great Lakes. Remote Sens. 2020, 12, 1605. [Google Scholar] [CrossRef]
- Diouf, D.; Seck, D. Modeling the Chlorophyll-a from Sea Surface Reflectance in West Africa by Deep Learning Methods: A Comparison of Multiple Algorithms. Int. J. Artif. Intell. Appl. 2019, 10, 33–40. [Google Scholar] [CrossRef]
- Johnson, R.; Strutton, P.G.; Wright, S.W.; McMinn, A.; Meiners, K.M. Three Improved Satellite Chlorophyll Algorithms for the Southern Ocean. J. Geophys. Res. Ocean. 2013, 118, 3694–3703. [Google Scholar] [CrossRef]
- Hansen, C.H.; Williams, G.P.; Adjei, Z.; Barlow, A.; Nelson, E.J.; Miller, A.W. Reservoir Water Quality Monitoring Using Remote Sensing with Seasonal Models: Case Study of Five Central-Utah Reservoirs. Lake Reserv. Manag. 2015, 31, 225–240. [Google Scholar] [CrossRef]
- Mobley, C.D. Hydrolight 3.1 Users’ Guide. 1996. Available online: https://apps.dtic.mil/sti/pdfs/ADA356954.pdf (accessed on 1 January 2022).
- Salama, M.S.; Verhoef, W. Two-Stream Remote Sensing Model for Water Quality Mapping: 2SeaColor. Remote Sens. Environ. 2015, 157, 111–122. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Carder, K.L. Estimating Chlorophyll a Concentrations from Remote-Sensing Reflectance in Optically Shallow Waters. Remote Sens. Environ. 2006, 101, 13–24. [Google Scholar] [CrossRef]
- Werdell, P.J.; Jeremy Werdell, P.; Roesler, C.S. Remote Assessment of Benthic Substrate Composition in Shallow Waters Using Multispectral Reflectance. Limnol. Oceanogr. 2003, 48, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Hicks, B.J.; Stichbury, G.A.; Brabyn, L.K.; Allan, M.G.; Ashraf, S. Hindcasting Water Clarity from Landsat Satellite Images of Unmonitored Shallow Lakes in the Waikato Region, New Zealand. Environ. Monit. Assess. 2013, 185, 7245–7261. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Q.; Tian, Y.Q.; Becker, B.L. Remote Sensing Estimation of Colored Dissolved Organic Matter (CDOM) in Optically Shallow Waters. ISPRS J. Photogramm. Remote Sens. 2017, 128, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Siqueira, P.; Torbick, N. Spatio-Temporal Variations of CDOM in Shallow Inland Waters from a Semi-Analytical Inversion of Landsat-8. Remote Sens. Environ. 2018, 218, 189–200. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. 2. Deriving Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef]
- Śliwiński, D.; Konieczna, A.; Roman, K. Geostatistical Resampling of LiDAR-Derived DEM in Wide Resolution Range for Modelling in SWAT: A Case Study of Zgłowiączka River (Poland). Remote Sens. 2022, 14, 1281. [Google Scholar] [CrossRef]
- PN-EN ISO 7027-1:2016-09; Water Quality—Determination of Turbidity (ISO_7027:1999). Polish Committee for Standardization EN_ISO_7027:1999: Warsaw, Poland, 2016.
- PN-86/C-05560/02; Water and Sewage. Polish Committee for Standardization: Warsaw, Poland, 1986. Available online: https://www.ydylstandards.org.cn/static/down/pdf/PN%20C05560-02-1986_0000.pdf (accessed on 1 January 2022).
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; U.S. Geological Survey Data Series 1035; U.S. Geological Survey: Reston, VA, USA, 2017; 61p. [CrossRef]
- Hachaj, P.S. Analysis of Hydrodynamics of Barrier Reservoirs for the Needs of Water Management: Model and Its Application; Cracow University of Technology: Kraków, Poland, 2019; ISBN 9788365991614. [Google Scholar]
Formula | Source |
---|---|
Cchl-a=(23.09 ± 0.98) + (117.42 ± 2.49)·(R−1660–670 − R−1700–730)·R740–760 Cchl-a = −(16.2 ± 1.8) + (136.3 ± 3.2)·(R−1662–672 · R743–753) | (Gitelson et al., 2006) [21] |
Cchl-a = (0.74·R681 + [(681 nm − 665 nm)/(681 nm − 620 nm)]·(R620 − R681) − R665 | (Shen et al., 2010) [22] |
log10(Cchl-a) = (0.32978 + 2.6465X + 1.9988X2 + 0.5708X3 + 3.033X4) X = log10(Max(R443nm, R486nm)/R551nm) | (Son et al., 2020) [23] |
Cchl-a [mg/L] = 1.67 + 299 R438 − 33.1 R675 − 7217 R438R675 – 14022 R2438 − 973 R2675 + 373702 R2438R675 + 112440 R438R2675 − 3317051 R2438R2675 Cchl-a [mg/L] = 3.45 + 66.2 R438 − 100 R550 − 3.9 R675 + 5349 R438R550 − 16643 R550R675 − 12682 R438R675 + 3077 R2438 + 5209 R2550 + 15992 R2675 | (Johan et al., 2018) [20] |
log10(Cchl-a) = (0.366 − 3.067X + 1.930X2 + 6.049X3 − 1.532 X4) X = log10(Max(R443nm/R555nm, R490nm/R555nm, R510nm/R555nm)) | GlobColour (Johnson et al., 2013) [25] (Diouf et al., 2018) [24] |
log10(Cchl-a) = (0.6994 − 2.0384X + 0.4656RX2 + 0.4337X3) X = log10(Max(Rrs(443/555), Rrs(490=555)) Cchl-a = [mg/m3] | Modis-Aqua (Johnson et al., 2013) [24] |
Parameter | Value at Known Turbidity | Value at Turbidity Calculated from Model (17) | Units |
---|---|---|---|
1 | 2 | 3 | 4 |
−32.25907512 | −75.68466110 | ln(mg/m3) | |
−43.55040094 | −72.72855795 | – | |
0.015293030 | 0.006693771 | – | |
0.007665104 | 0.011140396 | (NTU·m)−1 | |
42.36776151 | 62.29811979 | – | |
0.010635655 | 0.008960131 | – | |
0.003498578 | 0.000530822 | (NTU·m)−1 | |
−23.86732103 | −47.45269805 | – | |
4.731529537 | 9.465054057 | – | |
−5.149196218 | −9.056892001 | – | |
4.533167105 | 6.641324249 | – | |
−2.345421643 | −5.388690882 | – | |
0.193746731 | 0.802524849 | – |
Parameter | Value | Unit |
---|---|---|
−28.87376959 | ln(NTU) | |
13.12134743 | – | |
0.014648999 | – | |
0.0000434391 | (NTU·m)−1 | |
−59.94110417 | – | |
26.75417218 | – | |
1.323875637 | – | |
−8.392820945 | – | |
3.936558098 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielski, A.; Toś, C. Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir. Appl. Sci. 2022, 12, 6734. https://doi.org/10.3390/app12136734
Bielski A, Toś C. Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir. Applied Sciences. 2022; 12(13):6734. https://doi.org/10.3390/app12136734
Chicago/Turabian StyleBielski, Andrzej, and Cezary Toś. 2022. "Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir" Applied Sciences 12, no. 13: 6734. https://doi.org/10.3390/app12136734
APA StyleBielski, A., & Toś, C. (2022). Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir. Applied Sciences, 12(13), 6734. https://doi.org/10.3390/app12136734