An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise
Abstract
:1. Introduction
2. Model Development
2.1. Convective Heat Transfer from Shoe Sole to Air
2.2. Heat Generation in Shoe Sole due to Periodic Loading–Unloading Condition
2.3. Metabolism Rate Assessment during Walking/Jogging
2.4. Latent Heat Loss due to Sweating during Walking/Jogging
3. Heat Transfer Modeling of a Shod Foot
4. Illustrative Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
Area | |
Specific heat | |
Storage modulus | |
Loss modulus | |
Metabolism intensification factor | |
Average convective heat transfer coefficient | |
Evaporative heat transfer coefficient | |
Water latent heat | |
Thermal conductivity | |
Shoe length | |
LR | Lewis ratio |
Pressure | |
Prandtl number | |
Heat flux | |
Volumetric heat generation rate | |
Reynolds number | |
Relative humidity | |
Temperature | |
Thickness | |
Dissipated energy per unit of volume in one period | |
Gait speed | |
Cartesian coordinate axis | |
Greek letters | |
Strain amplitude | |
Viscosity | |
Density | |
Stress amplitude | |
Time | |
Subscripts | |
cont | Contact |
conv | Convection |
f | Foot sole in the jogging condition |
f0 | Foot sole in the static steady condition |
G | Ground |
gen | Generation |
I | Insole |
met | Metabolism |
s | Shoe sole |
sat | Saturated |
sw | Sweating |
∞ | Ambient |
References
- Havenith, G.; Ouzzahra, Y.; Gerrett, N.; Faulkner, S. Assessing the lower temperature limit for comfort in footwear. In Proceedings of the 15th International Conference on Environmental Ergonomics, Queenstown, New Zealand, 11–15 February 2013. [Google Scholar]
- Shimazaki, Y.; Murata, M. Effect of gait on formation of thermal environment inside footwear. Appl. Ergon. 2015, 49, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, Y.; Matsutani, T.; Satsumoto, Y. Evaluation of thermal formation and air ventilation inside footwear during gait: The role of gait and fitting. Appl. Ergon. 2016, 55, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Kopitar, D.; Akalovic, J.; Skenderi, Z. Thermal resistance of leather and membranes for summer desert military footwear under different climate conditions. In Functional Textiles and Clothing; Springer: Singapore, 2019; pp. 3–9. [Google Scholar]
- Puszkarz, A.K.; Usupov, A. The Study of Footwear Thermal Insulation Using Thermography and the Finite Volume Method. Int. J. Thermophys. 2019, 40, 45. [Google Scholar] [CrossRef] [Green Version]
- Rintamäki, H.; Rissanen, S.; Mäkinen, T.; Peitso, A. Finger temperatures during military field training at 0 to −29 °C. J. Therm. Biol. 2004, 29, 857–860. [Google Scholar] [CrossRef]
- Covill, D.; Guan, Z.; Bailey, M.; Pope, D. Finite element analysis of the heat transfer in footwear. In The Engineering of Sport 7; Springer: Paris, France, 2008; pp. 247–254. [Google Scholar]
- Covill, D.; Guan, Z.; Bailey, M.; Raval, H. Development of thermal models of footwear using finite element analysis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011, 225, 268–281. [Google Scholar] [CrossRef]
- Liu, G.; Su, Y.; Zhu, W.; Tian, M.; Li, J.; Tian, Y. Numerical simulation of heat transfer in electrically heated footwear in a severely cold environment. Build. Environ. 2022, 207, 108429. [Google Scholar] [CrossRef]
- James, S. Encyclopaedia of Occupational Health and Safety, 4th ed.; International Labour Office: Geneva, Switzerland, 1999. [Google Scholar]
- Taylor, N.A.; Machado-Moreira, C.A.; van den Heuvel, A.M.; Caldwell, J.N. Hands and feet: Physiological insulators, radiators and evaporators. Eur. J. Appl. Physiol. 2014, 114, 2037–2060. [Google Scholar] [CrossRef]
- Kinoshita, H.; Bates, B.T. The effect of environmental temperature on the properties of running shoes. J. Appl. Biomech. 1996, 12, 258–268. [Google Scholar] [CrossRef]
- Bulcao, C.F.; Frank, S.M.; Raja, S.N.; Tran, K.M.; Goldstein, D.S. Relative contribution of core and skin temperatures to thermal comfort in humans. J. Therm. Biol. 2000, 25, 147–150. [Google Scholar] [CrossRef]
- Arezes, P.; Neves, M.M.; Teixeira, S.; Leão, C.P.; Cunha, J. Testing thermal comfort of trekking boots: An objective and subjective evaluation. Appl. Ergon. 2013, 44, 557–565. [Google Scholar] [CrossRef]
- Ersen, A.; Adams, L.S.; Myers, R.T.; Hirschman, G.B.; Lavery, L.A.; Yavuz, M. Temperature Regulating Shoes for Prevention of Diabetic Foot Ulcers. Diabetes 2018, 67, 41-LB. [Google Scholar] [CrossRef]
- Houghton, V.J.; Bower, V.M.; Chant, D.C. Is an increase in skin temperature predictive of neuropathic foot ulceration in people with diabetes? A systematic review and meta-analysis. J. Foot Ankle Res. 2013, 6, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavuz, M.; Ersen, A.; Monga, A.; Lavery, L.A.; Garrett, A.G.; Salem, Y.; Hirschman, G.B.; Myers, R. Temperature-and Pressure-Regulating Insoles for Prevention of Diabetic Foot Ulcers. J. Foot Ankle Surg. 2020, 59, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Taiar, R.; Rebay, M.; Vannozzi, G.; Sanna, G.; Cappozzo, A. Evolution of the in-Shoe Temperature during Walking and Running; Andreas, H., Ed.; ACTA Press: Anaheim, CA, USA, 2013; pp. 130–133. [Google Scholar]
- Carbonell, L.; Priego Quesada, J.I.; Retorta, P.; Benimeli, M.; Cibrián Ortiz De Anda, R.M.; Salvador Palmer, R.; González Peña, R.J.; Galindo, C.; Pino Almero, L.; Blasco, M.C. Thermographic quantitative variables for diabetic foot assessment: Preliminary results. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2019, 7, 660–666. [Google Scholar] [CrossRef]
- Dessing, O.; Jansen, A.J.; Leihitu, C.; Overhage, D. Experimental study of heat dissipation in indoor sports shoes. Procedia Eng. 2014, 72, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Rebay, M.; Arfaoui, A.; Leopol, A.; Perin, J.; Taiar, R. Heat transfer in athletic shoes during the running. In Proceedings of the 5th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, 25–27 August 2007. [Google Scholar]
- Irzmańska, E. The microclimate in protective fire fighter footwear: Foot temperature and air temperature and relative humidity. Autex. Res. J. 2016, 16, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Shimazaki, Y.; Aisaka, K. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 278. [Google Scholar]
- Shimazaki, Y.; Nozu, S.; Inoue, T. Shock-absorption properties of functionally graded EVA laminates for footwear design. Polym. Test. 2016, 54, 98–103. [Google Scholar] [CrossRef]
- Naemi, R.; Chockalingam, N. Development of a method for quantifying the midsole reaction model parameters. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 1273–1277. [Google Scholar] [CrossRef]
- Naemi, R.; Chockalingam, N. Mathematical models to assess foot-ground interaction: An overview. Med. Sci. Sports Exerc. 2013, 45, 1524–1533. [Google Scholar] [CrossRef]
- Naemi, R.; Chatzistergos, P.E.; Chockalingam, N. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load. Med. Biol. Eng. Comput. 2016, 54, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Nemati, H.; Moghimi, M.; Naemi, R. A mathematical model to investigate heat transfer in footwear during walking and jogging. J. Therm. Biol. 2021, 97, 102778. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.W.; Özisik, M.N. Heat Conduction; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Bergman, T.L.; Incropera, F.P.; Lavine, A.S.; DeWitt, D.P. Introduction to Heat Transfer; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Even-Tzur, N.; Weisz, E.; Hirsch-Falk, Y.; Gefen, A. Role of EVA viscoelastic properties in the protective performance of a sport shoe: Computational studies. Bio-Med. Mater. Eng. 2006, 16, 289–299. [Google Scholar]
- Roylance, D. Engineering Viscoelasticity; Department of Materials Science and Engineering–Massachusetts Institute of Technology: Cambridge, MA, USA, 2001; pp. 1–37. Available online: http://web.mit.edu/course/3/3.11/www/modules/visco.pdf (accessed on 26 May 2022).
- Chuckpaiwong, B.; Nunley, J.A.; Mall, N.A.; Queen, R.M. The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture 2008, 28, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Kipp, S. Why Does Metabolic Rate Increase Curvilinearly with Running Velocity. Master’s Thesis, University of Colorado, Boulder, CO, USA, 2017. [Google Scholar]
- Gagge, A.P. An effective temperature scale based on a simple model of human physiological regulatory response. Ashrae Trans. 1971, 77, 247–262. [Google Scholar]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance; CRC Press: New York, NY, USA, 2007. [Google Scholar]
- Arens, E.A.; Zhang, H. The skin’s role in human thermoregulation and comfort. In Thermal and Moisture Transport in Fibrous Materials; Pan, N., Gibson, P., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2006; pp. 560–602. [Google Scholar]
- Foda, E.; Sirén, K. A new approach using the Pierce two-node model for different body parts. Int. J. Biometeorol. 2011, 55, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.R.; Cheuvront, S.N.; Montain, S.J.; Goodman, D.A.; Blanchard, L.A.; Berglund, L.G.; Sawka, M.N. Expanded prediction equations of human sweat loss and water needs. J. Appl. Physiol. 2009, 107, 379–388. [Google Scholar] [CrossRef] [Green Version]
(Pa) | (Pa) | Hardness | |||
---|---|---|---|---|---|
2585 | 0.11 | 240 | A45 |
Temperature (°C) | ||||
---|---|---|---|---|
25 | 1006.96 | 0.0261 | 1.171 | |
35 * | 1007 | 0.0269 | 1.135 | --- |
Speed (km/h) | 3 | 6 | 9 |
---|---|---|---|
Max. Contact force %B.W. | 100 | 110 | 170 |
1700 | 0.258 | 1130 |
Pitch (mm) | |||
---|---|---|---|
1.5 | 1386.7 | 0.145 | 619.6 |
2 | 1248.1 | 0.096 | 393.9 |
2.5 | 1184.0 | 0.073 | 289.5 |
3 | 1149.2 | 0.060 | 232.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemati, H.; Naemi, R. An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise. Appl. Sci. 2022, 12, 6806. https://doi.org/10.3390/app12136806
Nemati H, Naemi R. An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise. Applied Sciences. 2022; 12(13):6806. https://doi.org/10.3390/app12136806
Chicago/Turabian StyleNemati, Hossain, and Roozbeh Naemi. 2022. "An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise" Applied Sciences 12, no. 13: 6806. https://doi.org/10.3390/app12136806
APA StyleNemati, H., & Naemi, R. (2022). An Analytical Model to Predict Foot Sole Temperature: Implications to Insole Design for Physical Activity in Sport and Exercise. Applied Sciences, 12(13), 6806. https://doi.org/10.3390/app12136806