Preliminary Study on the Generating Mechanism of the Atmospheric Vertical Electric Field before Earthquakes
Abstract
:1. Introduction
2. Methodology
2.1. Radon Concentration
2.1.1. Vertical Distribution
2.1.2. Decay Products
2.2. Ionization Rate at Different Heights
2.2.1. Geometric Models and Particle Source
2.2.2. Physical Lists and Data Statistics
2.3. Physical Lists and Data Statistics
3. Wenchuan EQ Analysis and Discussion
3.1. Radon Concentration before the Wenchuan EQ
3.2. Results and Discussion
3.2.1. Monte Carlo Simulation of Ionization Processes
3.2.2. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China Earthquake Network Center. Available online: https://news.ceic.ac.cn/ (accessed on 25 February 2022).
- Li, S.Q.; Liu, H.B. Vulnerability prediction model of typical structures considering empirical seismic damage observation data. Bull. Earthq. Eng. 2022. [Google Scholar] [CrossRef]
- Bilgin, H.; Shkodrani, N.; Hysenlliu, M.; Ozmen, H.B.; Isik, E.; Harirchian, E. Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes. Eng. Fail. Anal. 2022, 131, 105824. [Google Scholar] [CrossRef]
- Shibusawa, H. A dynamic spatial CGE approach to assess economic effects of a large earthquake in China. Prog. Disaster Sci. 2020, 6, 100081. [Google Scholar] [CrossRef]
- Rose, A.; Benavides, J.; Chang, S.E.; Szczesniak, P.; Lim, D. The regional economic impact of an earthquake: Direct and indirect effects of electricity lifeline disruptions. J. Reg. Sci. 1997, 37, 437–458. [Google Scholar] [CrossRef]
- Barone, G.; Mocetti, S. Natural disasters, growth and institutions: A tale of two earthquakes. J. Urban Econ. 2014, 84, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.; Sato, S.; Tajima, Y. The 11 March 2011 East Japan earthquake and tsunami: Tsunami effects on coastal infrastructure and buildings. Pure Appl. Geophys. 2013, 170, 1019–1031. [Google Scholar] [CrossRef]
- Namgaladze, A.; Karpov, M.; Knyazeva, M. Seismogenic disturbances of the ionosphere during high geomagnetic activity. Atmosphere 2019, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Fan, Y.; Du, X.; Cui, T.; Zhou, K.; Singh, R.P. Diurnal characteristics of geoelectric fields and their changes associated with the Alxa Zuoqi MS5. 8 earthquake on 15 April 2015 (Inner Mongolia). Earthq. Sci 2018, 31, 35–43. [Google Scholar] [CrossRef]
- Holub, R.; Brady, B. The effect of stress on radon emanation from rock. J. Geophys. Res. Solid Earth 1981, 86, 1776–1784. [Google Scholar] [CrossRef]
- Walia, V.; Virk, H.S.; Bajwa, B.S. Radon precursory signals for some earthquakes of magnitude> 5 occurred in NW Himalaya: An overview. Pure Appl. Geophys. 2006, 163, 711–721. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Petitta, M.; Kim, H.; Kaown, D.; Park, I.W.; Lee, S.; Lee, K.K. Groundwater system responses to the 2016 ML 5.8 Gyeongju earthquake, South Korea. J. Hydrol. 2019, 576, 150–163. [Google Scholar] [CrossRef]
- Papachristodoulou, C.; Stamoulis, K.; Ioannides, K. Temporal variation of soil gas radon associated with seismic activity: A case study in NW Greece. Pure Appl. Geophys. 2020, 177, 821–836. [Google Scholar] [CrossRef]
- Nevinsky, I.; Tsvetkova, T.; Dogru, M.; Aksoy, E.; Inceoz, M.; Baykara, O.; Kulahci, F.; Melikadze, G.; Akkurt, I.; Kulali, F.; et al. Results of the simultaneous measurements of radon around the Black Sea for seismological applications. J. Environ. Radioact. 2018, 192, 48–66. [Google Scholar] [CrossRef]
- Derr, J.S.; St-Laurent, F.; Freund, F.; Thériault, R. Earthquake lights. Encycl. Earth Sci. Ser. Encycl. Solid Earth Geophys. 2011, 5, 165–167. [Google Scholar]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K.; Pokhmelnykh, L. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth, Parts A/B/C 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Pulinets, S.; Alekseev, V.; Legen’ka, A.; Khegai, V. Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification. Adv. Space Res. 1997, 20, 2173–2176. [Google Scholar] [CrossRef]
- Choudhury, A.; Guha, A.; De, B.K.; Roy, R. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 2013, 56, R0331. [Google Scholar]
- Jin, X.; Zhang, L.; Bu, J.; Qiu, G.; Ma, L.; Liu, C.; Li, Y. Discussion on anomaly of atmospheric electrostatic field in Wenchuan Ms8. 0 earthquake. J. Electrost. 2020, 104, 103423. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Ciraolo, L.; Singh, R.; Cervone, G.; Leyva, A.; Dunajecka, M.; Karelin, A.; Boyarchuk, K.; Kotsarenko, A. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7. 8 earthquake of 21 January 2003. Ann. Geophys. 2006, 24, 835–849. [Google Scholar] [CrossRef] [Green Version]
- Boyarchuk, K.; Lomonosov, A.; Pulinets, S. Electrode effect as an earthquake precursor. Bull. Russ. Acad. Sci. Phys. 1997, 61, 175–179. [Google Scholar]
- Main, I.G.; Bell, A.F.; Meredith, P.G.; Geiger, S.; Touati, S. The dilatancy–diffusion hypothesis and earthquake predictability. Geol. Soc. Lond. Spec. Publ. 2012, 367, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.; Nicoll, K. Fair weather criteria for atmospheric electricity measurements. J. Atmos. Sol.-Terr. Phys. 2018, 179, 239–250. [Google Scholar] [CrossRef]
- Martell, E.A. Enhanced ion production in convective storms by transpired radon isotopes and their decay products. J. Geophys. Res. Atmos. 1985, 90, 5909–5916. [Google Scholar] [CrossRef]
- Geant4: A Toolkit for the Simulation. Available online: https://geant4.web.cern.ch/ (accessed on 25 February 2022).
- Jesse, W.P. Precision measurements of W for polonium alpha particles in various gases. Radiat. Res. 1968, 33, 229–237. [Google Scholar] [CrossRef]
- Vargas, A.; Arnold, D.; Adame, J.A.; Grossi, C.; Hernández-Ceballos, M.A.; Bolivar, J.P. Analysis of the vertical radon structure at the Spanish “El Arenosillo” tower station. J. Environ. Radioact. 2015, 139, 1–17. [Google Scholar] [CrossRef]
- Riousset, J.A.; Pasko, V.P.; Bourdon, A. Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.; Huba, J.; Joyce, G.; Lee, L. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lu, J.; Parrot, M.; Tan, H.; Chang, Y.; Zhang, X.; Wang, Y. Review of unprecedented ULF electromagnetic anomalous emissions possibly related to the Wenchuan M S= 8.0 earthquake, on 12 May 2008. Nat. Hazards Earth Syst. Sci. 2013, 13, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Holzer, R.E. Atmospheric electrical effects of nuclear explosions. J. Geophys. Res. 1972, 77, 5845–5855. [Google Scholar] [CrossRef]
Particle Type | Number | Average Energy | Range in Air |
---|---|---|---|
Rn | 100,000 | 0 | 0 |
alpha | 400,000 | 6.123 MeV | 4.94 cm |
e | 520,866 | 263.4 keV | 63.16 cm |
Altitude/m | Average Energy Deposition/keV | Simulation Number | Total Energy Deposition/eV | Ion Pairs | Ionization Rate/cms |
---|---|---|---|---|---|
0.1 | 60.8249 | 2.7924 × 10 | 1.6985 × 10 | 4.8527 × 10 | 1716.3 |
1 | 60.8241 | 2.7913 × 10 | 1.6978 × 10 | 4.8508 × 10 | 1715.62 |
2 | 60.824 | 2.7901 × 10 | 1.6971 × 10 | 4.8487 × 10 | 1714.89 |
3 | 60.8242 | 2.7889 × 10 | 1.6963 × 10 | 4.8467 × 10 | 1714.17 |
4 | 60.8238 | 2.7877 × 10 | 1.6956 × 10 | 4.8446 × 10 | 1713.43 |
5 | 60.824 | 2.7866 × 10 | 1.6949 × 10 | 4.8426 × 10 | 1712.7 |
6 | 60.8241 | 2.7854 × 10 | 1.6942 × 10 | 4.8405 × 10 | 1711.98 |
7 | 60.8241 | 2.7842 × 10 | 1.6935 × 10 | 4.8384 × 10 | 1711.25 |
8 | 60.8239 | 2.7830 × 10 | 1.6927 × 10 | 4.8364 × 10 | 1710.52 |
9 | 60.8239 | 2.7818 × 10 | 1.6920 × 10 | 4.8343 × 10 | 1709.79 |
10 | 60.8237 | 2.7806 × 10 | 1.6913 × 10 | 4.8322 × 10 | 1709.06 |
20 | 60.823 | 2.7688 × 10 | 1.6841 × 10 | 4.8117 × 10 | 1701.78 |
30 | 60.8226 | 2.7571 × 10 | 1.6769 × 10 | 4.7912 × 10 | 1694.55 |
40 | 60.8215 | 2.7454 × 10 | 1.6698 × 10 | 4.7708 × 10 | 1687.32 |
50 | 60.8206 | 2.7337 × 10 | 1.6627 × 10 | 4.7505 × 10 | 1680.14 |
60 | 60.8196 | 2.7221 × 10 | 1.6556 × 10 | 4.7302 × 10 | 1672.98 |
70 | 60.8209 | 2.7106 × 10 | 1.6486 × 10 | 4.7103 × 10 | 1665.91 |
80 | 60.8216 | 2.6991 × 10 | 1.6416 × 10 | 4.6903 × 10 | 1658.86 |
90 | 60.8207 | 2.6876 × 10 | 1.6346 × 10 | 4.6703 × 10 | 1651.8 |
100 | 60.8228 | 2.6762 × 10 | 1.6277 × 10 | 4.6507 × 10 | 1644.84 |
Altitude/m | Average Energy Deposition/keV | Simulation Number | Total Energy Deposition/eV | Ion Pairs | Ionization Rate/cms |
---|---|---|---|---|---|
10 | 462.855 | 4.27 × 10 | 9.89 × 10 | 2.93 × 10 | 103.45 |
20 | 462.958 | 4.25 × 10 | 9.85 × 10 | 2.91 × 10 | 103.04 |
30 | 462.936 | 4.24 × 10 | 9.80 × 10 | 2.90 × 10 | 102.59 |
40 | 462.963 | 4.22 × 10 | 9.76 × 10 | 2.89 × 10 | 102.17 |
50 | 462.893 | 4.20 × 10 | 9.72 × 10 | 2.88 × 10 | 101.72 |
60 | 462.878 | 4.18 × 10 | 9.68 × 10 | 2.86 × 10 | 101.28 |
70 | 462.954 | 4.16 × 10 | 9.64 × 10 | 2.85 × 10 | 100.87 |
80 | 462.938 | 4.15 × 10 | 9.60 × 10 | 2.84 × 10 | 100.44 |
90 | 462.892 | 4.13 × 10 | 9.56 × 10 | 2.83 × 10 | 100 |
100 | 462.978 | 4.11 × 10 | 9.52 × 10 | 2.82 × 10 | 99.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, R.; Cai, M.; Chen, T.; Yang, T.; Xu, L.; Xia, Q.; Jia, X.; Han, J. Preliminary Study on the Generating Mechanism of the Atmospheric Vertical Electric Field before Earthquakes. Appl. Sci. 2022, 12, 6896. https://doi.org/10.3390/app12146896
Han R, Cai M, Chen T, Yang T, Xu L, Xia Q, Jia X, Han J. Preliminary Study on the Generating Mechanism of the Atmospheric Vertical Electric Field before Earthquakes. Applied Sciences. 2022; 12(14):6896. https://doi.org/10.3390/app12146896
Chicago/Turabian StyleHan, Ruilong, Minghui Cai, Tao Chen, Tao Yang, Liangliang Xu, Qing Xia, Xinyu Jia, and Jianwei Han. 2022. "Preliminary Study on the Generating Mechanism of the Atmospheric Vertical Electric Field before Earthquakes" Applied Sciences 12, no. 14: 6896. https://doi.org/10.3390/app12146896
APA StyleHan, R., Cai, M., Chen, T., Yang, T., Xu, L., Xia, Q., Jia, X., & Han, J. (2022). Preliminary Study on the Generating Mechanism of the Atmospheric Vertical Electric Field before Earthquakes. Applied Sciences, 12(14), 6896. https://doi.org/10.3390/app12146896