Stand Structure Impacts on Forest Modelling
Abstract
:1. Introduction
2. Factors Driving to Stand Structure Dynamics
3. Reasons for Modelling
4. Diameter at Breast Height and Basal Area
5. Height
6. Volume
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assmann, E. The Principles of Forest Yield Study; Pergamon Press: Oxford, UK, 1970. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Pretzsch, H. Forest Dynamics, Growth, and Yield; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Smith, D.M.; Larson, B.C.; Kelty, M.J.; Ashton, P.M.S. The Practice of Silviculture: Applied Forest Ecology; John Wiley & Sons, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Gonçalves, A.C. Multi-Species Stand Classification: Definition and Perspectives. In Forest Ecology and Conservation; Chakravarty, S., Shukla, G., Eds.; InTech: Rijeka, Croatia, 2017; pp. 3–23. [Google Scholar]
- O’Hara, K.L. Multiaged Silviculture Managing for Complex Forest Stand Structures; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Gonçalves, A.C. Influence of Stand Structure on Forest Biomass Sustainability. In Natural Resources Conservation and Advances for Sustainability; Jhariya, M.K., Meena, R.S., Banerjee, A., Meena, S.N., Eds.; Elsevier: Cambridge, MA, USA, 2022; pp. 327–352. [Google Scholar]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Schütze, G.; Ammer, C.; Annighöfer, P.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; et al. Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For. Ecol. Manag. 2016, 373, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Thurm, E.A.; Biber, P.; Pretzsch, H. Stem growth is favored at expenses of root growth in mixed stands and humid conditions for Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica). Trees 2017, 31, 349–365. [Google Scholar] [CrossRef]
- Zeller, L.; Ammer, C.; Annighöfer, P.; Biber, P.; Marshall, J.; Schütze, G.; del Río Gaztelurrutia, M.; Pretzsch, H. Tree ring wood density of Scots pine and European beech lower in mixed-species stands compared with monocultures. For. Ecol. Manag. 2017, 400, 363–374. [Google Scholar] [CrossRef]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Bolte, A.; Dorado-Liñán, I.; Etzold, S.; Fonti, P.; et al. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Sci. Total Environ. 2021, 784, 147222. [Google Scholar] [CrossRef]
- David, T.S.; Pinto, C.A.; Nadezhdina, N.; Kurz-Besson, C.; Henriques, M.O.; Quilhó, T.; Cermak, J.; Chaves, M.M.; Pereira, J.S.; David, J.S. Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. For. Ecol. Manag. 2013, 307, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Piraino, S. Assessing Pinus pinea L. resilience to three consecutive droughts in central-western Italian Peninsula. IForest-Biogeosciences For. 2020, 13, 246–250. [Google Scholar] [CrossRef]
- Pretzsch, H.; Grams, T.; Häberle, K.H.; Pritsch, K.; Bauerle, T.; Rötzer, T. Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees 2020, 34, 957–970. [Google Scholar] [CrossRef]
- Rukh, S.; Poschenrieder, W.; Heym, M.; Pretzsch, H. Drought Resistance of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in Mixed vs. Monospecific Stands and on Dry vs. Wet Sites. From Evidence at the Tree Level to Relevance at the Stand Level. Forests 2020, 11, 25. [Google Scholar] [CrossRef]
- Steckel, M.; del Río, M.; Heym, M.; Aldea, J.; Bielak, K.; Brazaitis, G.; Černý, J.; Coll, L.; Collet, C.; Ehbrecht, M.; et al. Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.)—Site water supply and fertility modify the mixing effect. For. Ecol. Manag. 2020, 461, 117908. [Google Scholar] [CrossRef]
- Neumann, R.B.; Cardon, Z.G. The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies: Tansley review. New Phytol. 2012, 194, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control: Tansley review. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Dybzinski, R. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 2013, 27, 833–840. [Google Scholar] [CrossRef]
- Forrester, D.I.; Ammer, C.; Annighöfer, P.J.; Barbeito, I.; Bielak, K.; Bravo-Oviedo, A.; Coll, L.; del Río, M.; Drössler, L.; Heym, M.; et al. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J. Ecol. 2018, 106, 746–760. [Google Scholar] [CrossRef] [Green Version]
- Fotis, A.T.; Curtis, P.S. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest. Tree Physiol. 2017, 37, 1426–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotis, A.T.; Morin, T.H.; Fahey, R.T.; Hardiman, B.S.; Bohrer, G.; Curtis, P.S. Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. For. Meteorol. 2018, 250–251, 181–191. [Google Scholar] [CrossRef]
- Forrester, D.I.; Kohnle, U.; Albrecht, A.T.; Bauhus, J. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For. Ecol. Manag. 2013, 304, 233–242. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Toïgo, M.; Perot, T.; Courbaud, B.; Castagneyrol, B.; Gégout, J.-C.; Longuetaud, F.; Jactel, H.; Vallet, P. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 2018, 106, 1073–1082. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Schall, P.; Ammer, C.; Fischer, M.; Seidel, D. Effects of structural heterogeneity on the diurnal temperature range in temperate forest ecosystems. For. Ecol. Manag. 2019, 432, 860–867. [Google Scholar] [CrossRef]
- Thom, D.; Keeton, W.S. Stand structure drives disparities in carbon storage in northern hardwood-conifer forests. For. Ecol. Manag. 2019, 442, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Zenner, E.K. Toward managing mixed-species stands: From parametrization to prescription. For. Ecosyst. 2017, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Larson, A.J.; Lutz, J.A.; Donato, D.C.; Freund, J.A.; Swanson, M.E.; HilleRisLambers, J.; Sprugel, D.G.; Franklin, J.F. Spatial aspects of tree mortality strongly differ between young and old-growth forests. Ecology 2015, 96, 2855–2861. [Google Scholar] [CrossRef] [Green Version]
- Looney, C.E.; D’Amato, A.W.; Palik, B.J.; Fraver, S.; Kastendick, D.N. Size-growth relationship, tree spatial patterns, and tree-tree competition influence tree growth and stand complexity in a 160-year red pine chronosequence. For. Ecol. Manag. 2018, 424, 85–94. [Google Scholar] [CrossRef]
- Florence, R.G. Ecology and Silviculture of Eucalyptus Forests; Csiro Publishing: Clayton, VIC, Australia, 1996. [Google Scholar]
- Gonçalves, A.C. Thinning: An Overview. In Silviculture; Gonçalves, A.C., Ed.; IntechOpen: London, UK, 2021; pp. 41–58. [Google Scholar]
- Scolforo, H.F.; Montes, C.; Cook, R.L.; Lee Allen, H.; Albaugh, T.J.; Rubilar, R.; Campoe, O. A New Approach for Modeling Volume Response from Mid-Rotation Fertilization of Pinus taeda L. Plantations. Forests 2020, 11, 646. [Google Scholar] [CrossRef]
- Cox, L.E.; York, R.A.; Battles, J.J. Growth and form of giant sequoia (Sequoiadendron giganteum) in a plantation spacing trial after 28 years. For. Ecol. Manag. 2021, 488, 119033. [Google Scholar] [CrossRef]
- Peracca, G.G.; O’Hara, K.L. Effects of Growing Space on Growth for 20-Year-Old Giant Sequoia, Ponderosa Pine, and Douglas-Fir in the Sierra Nevada. West. J. Appl. For. 2008, 23, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, Y.L.; Battaglia, M.A.; Asherin, L.A. Evaluation of the FVS-CR diameter growth model in structurally-heterogeneous ponderosa pine (Pinus ponderosa Douglas ex C. Lawson) stands in the Southern Rockies, and potential modifications. For. Ecol. Manag. 2019, 448, 1–10. [Google Scholar] [CrossRef]
- Noyer, E.; Ningre, F.; Dlouhá, J.; Fournier, M.; Collet, C. Time shifts in height and diameter growth allocation in understory European beech (Fagus sylvatica L.) following canopy release. Trees 2019, 33, 333–344. [Google Scholar] [CrossRef]
- Oliveira, T.S.; Tomé, M. Improving biomass estimation for Eucalyptus globulus Labill at stand level in Portugal. Biomass Bioenergy 2017, 96, 103–111. [Google Scholar] [CrossRef]
- Zianis, D.; Muukkonen, P.; Mäkipää, R.; Mencuccini, M. (Eds.) Biomass and Stem Volume Equations for Tree Species in Europe; The Finnish Society of Forest Science, The Finnish Forest Research Institute: Helsinki, Finland, 2005. [Google Scholar]
- Tilman, D. Mechanisms of plant competition for nutrients: The elements of a predictive theory of competition. In Perspectives on Plant Competition; Grace, J.B., Tilman, D., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 117–141. [Google Scholar]
- Vanclay, J.K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Pretzsch, H.; Biber, P.; Ďurský, J. The single tree-based stand simulator SILVA: Construction, application and evaluation. For. Ecol. Manag. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Pretzsch, H. Modelling growth in pure and mixed stands: A historical overview. In Management of Mixed-Species Forest: Silviculture and Economics; Bartelink, J.J., Gardiner, H., Pretzsch, H., Hekhuis, H.J., Franc, A., Eds.; DLO Institute for Forestry and Nature Research: Wageningen, The Netherlands, 1999; pp. 102–107. [Google Scholar]
- Gobakken, T.; Naesset, E. Spruce diameter growth in young mixed stands of Norway spruce (Picea abies (L.) Karst.) and birch (Betula pendula Roth B. pubescens Ehrh.). For. Ecol. Manag. 2002, 171, 297–308. [Google Scholar] [CrossRef]
- Riofrío, J.; del Río, M.; Maguire, D.; Bravo, F. Species Mixing Effects on Height–Diameter and Basal Area Increment Models for Scots Pine and Maritime Pine. Forests 2019, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Brūmelis, G.; Dauškane, I.; Elferts, D.; Strode, L.; Krama, T.; Krams, I. Estimates of Tree Canopy Closure and Basal Area as Proxies for Tree Crown Volume at a Stand Scale. Forests 2020, 11, 1180. [Google Scholar] [CrossRef]
- Sharma, R.P.; Vacek, Z.; Vacek, S.; Kučera, M. Modelling individual tree height–diameter relationships for multi-layered and multi-species forests in central Europe. Trees 2019, 33, 103–119. [Google Scholar] [CrossRef]
- Buchacher, R.; Ledermann, T. Interregional Crown Width Models for Individual Trees Growing in Pure and Mixed Stands in Austria. Forests 2020, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Poschenrieder, W.; Uhl, E.; Brazaitis, G.; Makrickiene, E.; Calama, R. Silvicultural prescriptions for mixed-species forest stands. A European review and perspective. Eur. J. For. Res 2021, 140, 1267–1294. [Google Scholar] [CrossRef]
- Lin, H.-T.; Lam, T.Y.; Peng, P.-H.; Chiu, C.-M. Embedding Boosted Regression Trees approach to variable selection and cross-validation in parametric regression to predict diameter distribution after thinning. For. Ecol. Manag. 2021, 499, 119631. [Google Scholar] [CrossRef]
- Øyen, B.-H.; Nilsen, P.; Bøhler, F.; Andreassen, K. Predicting individual tree and stand diameter increment responses of Norway spruce (Picea abies (L.) Karst.) after mountain forest selective cutting. For. Stud. 2011, 55, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Bollandsås, O.M.; Næsset, E. Weibull models for single-tree increment of Norway spruce, Scots pine, birch and other broadleaves in Norway. Scand. J. For. Res. 2009, 24, 54–66. [Google Scholar] [CrossRef]
- Zenner, E.K. Differential growth response to increasing growing stock and structural complexity in even- and uneven-sized mixed Picea abies stands in southern Finland. Can. J. For. Res. 2016, 46, 1195–1204. [Google Scholar] [CrossRef]
- He, H.; Zhu, G.; Ma, W.; Liu, F.; Zhang, X. Additivity of stand basal area predictions in canopy stratifications for natural oak forests. For. Ecol. Manag. 2021, 492, 119246. [Google Scholar] [CrossRef]
- Lundqvist, L.; Ahlström, M.A.; Axelsson, E.P.; Mörling, T.; Valinger, E. Multi-layered Scots pine forests in boreal Sweden result from mass regeneration and size stratification. For. Ecol. Manag. 2019, 441, 176–181. [Google Scholar] [CrossRef]
- Mehtätalo, L. A longitudinal height–diameter model for Norway spruce in Finland. Can. J. For. Res. 2004, 34, 131–140. [Google Scholar] [CrossRef]
- Holgén, P.; Mattsson, L.; Li, C.-Z. Recreation values of boreal forest stand types and landscapes resulting from different silvicultural systems: An economic analysis. J. Environ. Manag. 2000, 60, 173–180. [Google Scholar] [CrossRef]
- Rives, R.G.; Knapp, B.O.; Olson, M.G.; Weegman, M.D.; Muzika, R.-M. Regenerating mixed bottomland hardwood forests in north Missouri: Effects of harvest treatment on structure, composition, and growth through 15 years. For. Ecol. Manag. 2020, 475, 118371. [Google Scholar] [CrossRef]
- Latreille, A. Variability of the climate-radial growth relationship among Abies alba trees and populations along altitudinal gradients. For. Ecol. Manag. 2017, 396, 150–159. [Google Scholar] [CrossRef]
- Maxime, C.; Hendrik, D. Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 2011, 25, 265–276. [Google Scholar] [CrossRef]
- Rötzer, T.; Biber, P.; Moser, A.; Schäfer, C.; Pretzsch, H. Stem and root diameter growth of European beech and Norway spruce under extreme drought. For. Ecol. Manag. 2017, 406, 184–195. [Google Scholar] [CrossRef]
- Wernicke, J.; Körner, M.; Möller, R.; Seltmann, C.T.; Jetschke, G.; Martens, S. The potential of generalized additive modelling for the prediction of radial growth of Norway spruce from Central Germany. Dendrochronologia 2020, 63, 125743. [Google Scholar] [CrossRef]
- Clark, J.S.; Wolosin, M.; Dietze, M.; Ibáñez, I.; LaDeau, S.; Welsh, M.; Kloeppel, B. Tree growth inference and prediction from dameter censuses and ring widths. Ecol. Appl. 2007, 17, 1942–1953. [Google Scholar] [CrossRef] [PubMed]
- Sedmák, R.; Scheer, L. Modelling of tree diameter growth using growth functions parameterised by least squares and Bayesian methods. J. For. Sci. 2012, 58, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Curtis, R.O. Height-Diameter and Height-Diameter-Age Equations For Second-Growth Douglas-Fir. For. Sci. 1967, 13, 365–375. [Google Scholar]
- Colbert, K.C.; Larsen, D.E.; Lootens, J.R. Height-diameter equations for thirteen midwestern bottomland hardwood species. North. J. Appl. For. 2002, 19, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Yuancai, L.; Parresol, B.R. Remarks on Height-Diameter Modeling; SRS-RN-10; U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 2001. [Google Scholar]
- Hökkä, H.; Groot, A. An individual-tree basal area growth model for black spruce in second-growth peatland stands. Can. J. For. Res. 1999, 29, 621–629. [Google Scholar] [CrossRef]
- Tomé, M. Modelação do Crescimento da Árvore Individual em Povoamentos de Eucalyptus globulus Labill. (1a Rotação). Ph.D. Thesis, Região Centro de Portugal, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal, 1988. [Google Scholar]
- Jayaraman, K.; Lappi, J. Estimation of height-diameter curves through multilevel models with special reference to aven-aged teak stands. For. Ecol. Manag. 2001, 142, 155–162. [Google Scholar] [CrossRef]
- Fang, Z.; Bailey, R.L. Height–diameter models for tropical forests on Hainan Island in southern China. For. Ecol. Manag. 1998, 110, 315–327. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, S.; Lu, Y.; Froese, R.E.; Ming, A.; Li, Q. Thinning Effects on the Tree Height–Diameter Allometry of Masson Pine (Pinus massoniana Lamb.). Forests 2019, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Zeide, B.; Vanderschaaf, C. The Effect of Density on the Height-Diameter Relationship. In General Technical Report SRS-48; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2002; pp. 463–466. [Google Scholar]
- Gómez-García, E.; Fonseca, T.; Crecente-Campo, F.; Almeida, L.; Diéguez-Aranda, U.; Huang, S.; Marques, C. Height-diameter models for maritime pine in Portugal: A comparison of basic, generalized and mixed-effects models. IForest-Biogeosciences For. 2016, 9, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; van Couwenberghe, R.; Perez, V.; Piedallu, C. Evidence of climate effects on the height-diameter relationships of tree species. Ann. For. Sci. 2019, 76, 1. [Google Scholar] [CrossRef] [Green Version]
- Ciceu, A. A generalized nonlinear mixed-effects height–diameter model for Norway spruce in mixed-uneven aged stands. For. Ecol. Manag. 2020, 477, 118507. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Vospernik, S.; Wassermann, C.; Nothdurft, A. A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past. Forests 2018, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Hessenmöller, D.; Bouriaud, O.; Fritzlar, D.; Elsenhans, A.S.; Schulze, E.D. A silvicultural strategy for managing uneven-aged beech-dominated forests in Thuringia, Germany: A new approach to an old problem. Scand. J. For. Res. 2018, 33, 668–680. [Google Scholar] [CrossRef]
- Saud, P.; Lynch, T.B.; Anup, K.C.; Guldin, J.M. Using quadratic mean diameter and relative spacing index to enhance height–diameter and crown ratio models fitted to longitudinal data. Forestry 2016, 89, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Liu, S.; Zhang, Y.; Li, J. Variation in height-diameter allometry of ponderosa pine along competition, climate, and species diversity gradients in the western United States. For. Ecol. Manag. 2021, 497, 119477. [Google Scholar] [CrossRef]
- Bronisz, K.; Mehtätalo, L. Mixed-effects generalized height–diameter model for young silver birch stands on post-agricultural lands. For. Ecol. Manag. 2020, 460, 117901. [Google Scholar] [CrossRef]
- Alegria, C. Modelling merchantable volumes for uneven aged maritime pine (Pinus pinaster Aiton) stands establi- shed by natural regeneration in the central Portugal. Ann. For. Res. 2011, 54, 197–214. [Google Scholar]
- Alegria, C.; Tome, M. A set of models for individual tree merchantable volume prediction for Pinus pinaster Aiton in central inland of Portugal. Eur. J. For. Res. 2011, 130, 871–879. [Google Scholar] [CrossRef]
- Alegria, C.; Tomé, M. A tree distance-dependent growth and yield model for naturally regenerated pure uneven-aged maritime pine stands in central inland of Portugal. Ann. For. Sci. 2013, 70, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Bertini, G.; Ferretti, F.; Fabbio, G.; Raddi, S.; Magnani, F. Quantifying tree and volume mortality in Italian forests. For. Ecol. Manag. 2019, 444, 42–49. [Google Scholar] [CrossRef]
- Condés, S.; Del Rio, M.; Sterba, H. Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. For. Ecol. Manag. 2013, 292, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Cutini, A.; Chianucci, F.; Manetti Maria, C. Allometric relationships for volume and biomass for stone pine (Pinus pinea L.) in Italian coastal stands. IForest-Biogeosciences For. 2013, 6, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Durocher, C.; Thiffault, E.; Achim, A.; Auty, D.; Barrette, J. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass Bioenergy 2019, 120, 376–386. [Google Scholar] [CrossRef]
- Fonweban, J.; Gardiner, B.; Auty, D. Variable-top merchantable volume equations for Scots pine (Pinus sylvestris) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in Northern Britain. Forestry 2012, 85, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Gagné, L.; Sirois, L.; Lavoie, L. Comparaison du volume et de la valeur des bois résineux issus d’éclaircies par le bas et par dégagement d’arbres-élites dans l’Est du Canada. Can. J. For. Res. 2016, 46, 1320–1329. [Google Scholar] [CrossRef] [Green Version]
- Groot, A.; Saucier, J.-P. Volume increment efficiency of Picea mariana in northern Ontario, Canada. For. Ecol. Manag. 2008, 255, 1647–1653. [Google Scholar] [CrossRef]
- Johansson, T. Total Stem and Merchantable Volume Equations of Norway Spruce (Picea abies (L.) Karst.) Growing on Former Farmland in Sweden. Forests 2014, 5, 2037–2049. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhang, S.Y. Equations for predicting tree height, total volume, and product recovery for black spruce ( Picea mariana ) plantations in northeastern Quebec. For. Chron. 2005, 81, 808–814. [Google Scholar] [CrossRef] [Green Version]
- Magnani, F.; Raddi, S. Errors in estimating volume increments of forest trees. Forest@ 2014, 11, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Magnussen, S.; Kleinn, C.; Fehrmann, L. Wood volume errors from measured and predicted heights. Eur. J. For. Res. 2020, 139, 169–178. [Google Scholar] [CrossRef]
- McTague, J.P.; Scolforo, H.F.; Scolforo, J.R.S. Early volume formulas, taper, implicit volume ratio, and auxiliary information: A new system of volume equations invariant to silvicultural practices, site, and genetic pedigree. For. Ecol. Manag. 2020, 475, 118412. [Google Scholar] [CrossRef]
- Mora, B.; Wulder, M.; White, J.; Hobart, G. Modeling Stand Height, Volume, and Biomass from Very High Spatial Resolution Satellite Imagery and Samples of Airborne LiDAR. Remote Sens. 2013, 5, 2308–2326. [Google Scholar] [CrossRef] [Green Version]
- Pontailler, J.; Ceulemans, R.; Guittet, J.; Mau, F. Linear and non-linear functions of volume index to estimate woody biomass in high density young poplar stands. Ann. Sci. For. 1997, 54, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Raptis, D.I.; Kazana, V.; Kazaklis, A.; Stamatiou, C. Development and testing of volume models for Pinus nigra Arn., Fagus sylvatica L., and Quercus pubescens Willd. South. For. J. For. Sci. 2020, 82, 331–341. [Google Scholar] [CrossRef]
- Snorrason, A.; Einarsson, S.F. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Icel. Agric. Sci. 2006, 19, 15–24. [Google Scholar]
- Tabacchi, G.; Di Cosmo, L.; Gasparini, P. Aboveground tree volume and phytomass prediction equations for forest species in Italy. Eur. J. For. Res. 2011, 130, 911–934. [Google Scholar] [CrossRef]
- Urban, J.; Čermák, J.; Ceulemans, R. Above- and below-ground biomass, surface and volume, and stored water in a mature Scots pine stand. Eur. J. For. Res. 2015, 134, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Vallet, P.; Dhôte, J.-F.; Moguédec, G.L.; Ravart, M.; Pignard, G. Development of total aboveground volume equations for seven important forest tree species in France. For. Ecol. Manag. 2006, 229, 98–110. [Google Scholar] [CrossRef]
- Henry, M.; Bombelli, A.; Trotta, C.; Alessandrini, A.; Birigazzi, L.; Sola, G.; Vieilledent, G.; Santenoise, P.; Longuetaud, F.; Valentini, R.; et al. GlobAllomeTree: International platform for tree allometric equations to support volume, biomass and carbon assessment. IForest-Biogeosciences For. 2013, 6, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Næsset, E.; Tveite, B. Stand Volume Functions for Picea abies in Eastern, Central and Northern Norway. Scand. J. For. Res. 1999, 14, 164–174. [Google Scholar] [CrossRef]
- Metsaranta, J.; Bhatti, J. Evaluation of Whole Tree Growth Increment Derived from Tree-Ring Series for Use in Assessments of Changes in Forest Productivity across Various Spatial Scales. Forests 2016, 7, 303. [Google Scholar] [CrossRef] [Green Version]
- Stokland, J.N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands. For. Ecol. Manag. 2021, 488, 119017. [Google Scholar] [CrossRef]
Model | Advantages | Disadvantages | Performance |
---|---|---|---|
Linear and nonlinear regression |
|
|
|
Mixed models |
|
|
|
Generalized growth and yield models |
|
|
|
Nonlinear, seemingly unrelated regression |
|
|
|
|
|
|
|
|
| Mode difficult to work at operational level |
|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.C. Stand Structure Impacts on Forest Modelling. Appl. Sci. 2022, 12, 6963. https://doi.org/10.3390/app12146963
Gonçalves AC. Stand Structure Impacts on Forest Modelling. Applied Sciences. 2022; 12(14):6963. https://doi.org/10.3390/app12146963
Chicago/Turabian StyleGonçalves, Ana Cristina. 2022. "Stand Structure Impacts on Forest Modelling" Applied Sciences 12, no. 14: 6963. https://doi.org/10.3390/app12146963
APA StyleGonçalves, A. C. (2022). Stand Structure Impacts on Forest Modelling. Applied Sciences, 12(14), 6963. https://doi.org/10.3390/app12146963