GPR and Digital Survey for the Diagnosis and the 3D Representation of the Battle of Issus Mosaic from the House of the Faun, Pompeii (Naples, Italy)
Abstract
:1. Introduction
- (1)
- The creation of a high-resolution 3D model and orthophotos of the external surfaces through a photogrammetry digital survey in order to highlight the decay and even the type of decay, which is not perceivable by direct sight.
- (2)
- An analysis of the inner surfaces through the implementation of non-invasive GPR surveys with the purpose of detecting anomalies indicating voids or fractures.
- (3)
- An analysis of the photographic documentation produced between 1916 and 1917 in relation to the GPR data to understand the type of internal structure of support and carefully calculate its weight. This information is useful for facilitating the organization of the movement of the mosaic.
- (4)
- The production of new and detailed documentation, which has been non-existent so far and is useful for the imminent conservation actions.
2. Test Site: The Battle of Issus Mosaic
3. Material and Methods
3.1. Photogrammetric Digital Survey
- (1)
- Alignment of frames using the structure-from-motion (SfM) technique [30]. Three datasets were generated: a discrete point cloud describing the object’s starting geometry, the positions of the camera at the time of the acquisition of the frames and the internal calibration parameters of the camera (focal length and three radial and two tangential distortion coefficients relative to the main point).
- (2)
- Geometry construction through the generation of a dense cloud.
- (3)
- Positioning of the 3D model in Cartesian space. The points detected with the total station were entered as ground control points (GCPs) within the software. The result was the processing of a dense metric and georeferenced cloud, obtaining an average registration error of 0.007 m for the 2018 survey and 0.005 m for the 2020 survey.
- (4)
- Mesh generation by transforming the three-dimensional model from a point cloud to the surface of triangulated points. In order to recognize and adapt the discontinuities in the model, a “multi-resolution model” routine based on automated algorithms was used. Furthermore, an “optimization method” and a “decimation filter” were applied to reorganize and smooth the nodes of the triangles and to simplify the model and generate a multi-resolution model, respectively.
- (5)
- Construction of the texture through the application of digital images to the model and the creation of metric and geo-referenced orthophotos exported in the GeoTIFF format.
- (6)
- Generation and export in GeoTIFF format of the digital elevation model (DEM).
3.2. Ground-Penetrating Radar (GPR)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cozzolino, M.; Bakovic, M.; Borovinic, N.; Galli, G.; Gentile, V.; Jabucanin, M.; Mauriello, P.; Merola, P.; Živanovic, M. The Contribution of Geophysics to the Knowledge of the Hidden Archaeological Heritage of Montenegro. Geosciences 2020, 10, 187. [Google Scholar] [CrossRef]
- Fassbinder, J.W.E.; Reindel, M. Magnetometer prospection as research for pre-Spanish cultures at Nasca and Palpa, Perù. In Proceedings of the 6th International Archaeological Prospection Conference, Rome, Italy, 14–17 September 2005; Piro, S., Ed.; CNR: Roma, Italy, 2005; pp. 6–10. [Google Scholar]
- Tsokas, G.N.; Giannopoulos, A.; Tsourlos, P.; Vargemezis, G.; Tealby, J.M.; Sarris, A.; Papazachos, C.B.; Savopoulou, T. A large scale geophysical survey in the archaeological site of Europos (northern Greece). J. Appl. Geophys. 1994, 32, 85–98. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Tsourlos, P.; Tsokas, G.N.; Sarris, A. Two-dimensional and three-dimensional resistivity imaging in archaeological site investigation. Archaeol. Prospect. 2006, 13, 163–181. [Google Scholar] [CrossRef]
- Cozzolino, M.; Caliò, L.M.; Gentile, V.; Mauriello, P.; Di Meo, A. The Discovery of the Theater of Akragas (Valley of Temples, Agrigento, Italy): An Archaeological Confirmation of the Supposed Buried Structures from a Geophysical Survey. Geosciences 2020, 10, 161. [Google Scholar] [CrossRef]
- Cozzolino, M.; Gentile, V.; Giordano, C.; Mauriello, P. Imaging Buried Archaeological Features through Ground Penetrating Radar: The Case of the Ancient Saepinum (Campobasso, Italy). Geosciences 2020, 10, 225. [Google Scholar] [CrossRef]
- Masini, N.; Persico, R.; Rizzo, E. Some examples of GPR prospecting for monitoring of the monumental heritage. J. Geophys. Eng. 2010, 7, 190–199. [Google Scholar] [CrossRef]
- Tsourlos, P.I.; Tsokas, G.N. Non-destructive electrical resistivity tomography survey at the south walls of the Acropolis of Athens. Archaeol. Prospect. 2011, 18, 173–186. [Google Scholar] [CrossRef]
- Catapano, I.; Ludeno, G.; Soldovieri, F.; Tosti, F.; Padeletti, G. Structural assessment via ground penetrating radar at the Consoli Palace of Gubbio (Italy). Remote Sens. 2018, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Pirinu, A.; Balia, R.; Piroddi, L.; Trogu, A.; Utzeri, M.; Vignoli, G. Deepening the knowledge of military architecture in an urban context through digital representations integrated with geophysical surveys. The city walls of Cagliari (Italy). In Proceedings of the 2018 IEEE International Workshop on Metrology for Archaeology and Cultural Heritage, Cassino, Italy, 22–24 October 2018; pp. 211–215. [Google Scholar]
- Angelis, D.; Tsourlos, P.; Tsokas, G.; Vargemezis, G.; Zacharopoulou, G.; Power, C. Combined application of GPR and ERT for the assessment of a wall structure at the Heptapyrgion fortress (Thessaloniki, Greece). Appl. Geophys. 2018, 152, 208–220. [Google Scholar] [CrossRef]
- Pérez-Gracia, V.; Caselles, J.O.; Clapes, J.; Osorio, R.; Martínez, G.; Canas, J.A. Integrated near-surface geophysical survey of the Cathedral of Mallorca. J. Archaeol. Sci. 2009, 36, 1289–1299. [Google Scholar] [CrossRef]
- Cozzolino, M.; Gentile, V.; Mauriello, P.; Peditrou, A. Non-Destructive Techniques for Building Evaluation in Urban Areas: The Case Study of the Redesigning Project of Eleftheria Square (Nicosia, Cyprus). Appl. Sci. 2020, 10, 4296. [Google Scholar] [CrossRef]
- Matias, M.; Almeida, F.; Moura, R.; Barraca, N. High resolution NDT in the characterization of the inner structure and materials of heritage buildings walls and columns. Constr. Build. Mater. 2021, 267, 121726. [Google Scholar] [CrossRef]
- Manataki, M.; Maris, C.; Sarris, A.; Vafidis, A. Using GPR to Evaluate the Stratigraphic Condition of the Mosaic of the Dolphins in Delos Island, Greece, in order to Adopt the necessary Conservation measures. In Proceedings of the 10th International Workshop on Advanced Ground Penetrating Radar, The Hague, The Netherlands, 9–11 September 2019; pp. 1–7. [Google Scholar]
- Piroddi, L.; Vignoli, G.; Trogu, A.; Deidda, G.P. Non-destructive Diagnostics of Architectonic Elements in San Giuseppe Calasanzio’s Church in Cagliari: A Test-case for Micro-geophysical Methods within the Framework of Holistic/integrated Protocols for Artefact Knowledge. In Proceedings of the 2018 IEEE International Conference on Metrology for Archaeology and Cultural Heritage, Cassino, Italy, 22–24 October 2018; pp. 17–21. [Google Scholar]
- Urban, T.M.; Bennett, M.R.; Bustos, D.; Manning, S.W.; Reynolds, S.C.; Belvedere, M.; Odess, D.; Santucci, V.L. 3-D radar imaging unlocks the untapped behavioral and biomechanical archive of Pleistocene ghost tracks. Sci. Rep. 2019, 9, 16470. [Google Scholar] [CrossRef] [PubMed]
- Wiewel, A.; Conyers, L.; Piroddi, L.; Papadopoulos, N. An Experimental Use of Ground-Penetrating Radar to Identify Human Footprints. ArcheoSciences 2021, 45, 143–146. [Google Scholar] [CrossRef]
- Donadio, E.; Spanò, A.; Sambuelli, L.; Picchi, D. Three-Dimensional (3D) modelling and optimization for multipurpose analysis and representation of ancient statues. In Latest Developments in Reality-Based 3D Surveying and Modelling; Remondino, F., Georgopoulos, A., Gonzalez-Aguilera, D., Agrafiotis, P., Eds.; MDPI: Basel, Switzerland, 2018; pp. 95–118. ISBN 978-3-03842-684-4. [Google Scholar]
- Cozzolino, M.; Di Meo, A.; Gentile, V.; Mauriello, P.; Zullo, E. Combined Use of 3D Metric Survey and GPR for the Diagnosis of the Trapezophoros with Two Griffins Attacking a Doe of Ascoli Satriano (Foggia, Italy). Geosciences 2020, 10, 307. [Google Scholar] [CrossRef]
- Arias, P.; Armesto, J.; Di-Capua, D.; González-Drigo, R.; Lorenzo, H.; Pérez-Gracia, V. Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng. Fail. Anal. 2007, 14, 1444–1457. [Google Scholar] [CrossRef]
- Oses, N.; Dornaika, F.; Moujahid, A. Image-based delineation and classification of built heritage masonry. Remote Sens. 2014, 6, 1863–1889. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, A.; Minasi, M.; Casula, G.; Musacchio, M.; Buongiorno, M.F. Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensor 2015, 15, 194–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrile, V.; Bilotta, G.; Meduri, G.M.; De Carlo, D.; Nunnari, A. Laser Scanner technology, ground-penetrating radar and augmented reality for the survey and recovery of the artistic, archaeological and cultural heritage. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Danese, M.; Sileo, M.; Masini, M. Geophysical Methods and Spatial Information for the Analysis of Decay frescoes. Surv. Geophys. 2018, 39, 1149–1166. [Google Scholar] [CrossRef]
- Cozzolino, M.; Gabrielli, R.; Galatà, P.; Gentile, V.; Greco, G.; Scopinaro, E. Combined use of 3D metric surveys and non-invasive geophysical surveys for the determination of the state of conservation of the Stylite Tower (Umm ar-Rasas, Jordan). Ann. Geophys. 2019, 61, 72. [Google Scholar] [CrossRef]
- Bonucci, C. Scavi romani di Pompei, Ercolano, Boscotrecase, luglio a dicembre. BullInst 1832, 1, 11. [Google Scholar]
- Melillo, L. Das Alexandermosaik aus der Casa del Fauno in Pompeji—Die fruhen Bergungsmassnahmen. In Alexander der Grosse und die Oeffnung der Welt Asiens Kulturen im Wandel, 1st ed.; Hansen, S., Wieczorek, A., Tellenbach, M., Eds.; Schnell & Steiner: Mannheim, Germany, 2009; pp. 61–65. ISBN 978-3795421779. [Google Scholar]
- De Simone, A.; Piezzo, A. Il restauro del mosaico di Alessandro tra immagine e materia: Ultimi studi e prime ipotesi di intervento. In Atti del XXVII Colloquio Dell’associazione Italiana per lo Studio e la Conservazione del Mosaico, 27th ed.; Angelelli, C., Erba, M.E., Massara, D., Zulini, E., Eds.; Quasar: Rome, Italy, 2022; pp. 5–10. ISBN 987-88-5491-248-9. [Google Scholar]
- Remondino, F.; El-Hakim, S. Image-based 3-D modelling: A review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Conyers, L.B. Interpreting Ground-Penetrating Radar for Archaeology; Left Coast Press: Walnut Creek, CA, USA, 2012. [Google Scholar]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; John Wiley & Sons: Oxford, UK, 2011. [Google Scholar]
- Cozzolino, M.; Di Giovanni, E.; Mauriello, P.; Piro, S.; Zamuner, D. Geophysical Methods for Cultural Heritage Management; Geophysics Series; Springer: Cham, Switzerland, 2018. [Google Scholar]
- GPR-SLICE Software. Available online: http://www.gprsurvey.com/practice/GPR-SLICE (accessed on 13 May 2022).
- Jol, H. Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-0-444-53348-7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, M.; De Simone, A.; Gentile, V.; Mauriello, P.; Piezzo, A. GPR and Digital Survey for the Diagnosis and the 3D Representation of the Battle of Issus Mosaic from the House of the Faun, Pompeii (Naples, Italy). Appl. Sci. 2022, 12, 6965. https://doi.org/10.3390/app12146965
Cozzolino M, De Simone A, Gentile V, Mauriello P, Piezzo A. GPR and Digital Survey for the Diagnosis and the 3D Representation of the Battle of Issus Mosaic from the House of the Faun, Pompeii (Naples, Italy). Applied Sciences. 2022; 12(14):6965. https://doi.org/10.3390/app12146965
Chicago/Turabian StyleCozzolino, Marilena, Antonio De Simone, Vincenzo Gentile, Paolo Mauriello, and Amanda Piezzo. 2022. "GPR and Digital Survey for the Diagnosis and the 3D Representation of the Battle of Issus Mosaic from the House of the Faun, Pompeii (Naples, Italy)" Applied Sciences 12, no. 14: 6965. https://doi.org/10.3390/app12146965
APA StyleCozzolino, M., De Simone, A., Gentile, V., Mauriello, P., & Piezzo, A. (2022). GPR and Digital Survey for the Diagnosis and the 3D Representation of the Battle of Issus Mosaic from the House of the Faun, Pompeii (Naples, Italy). Applied Sciences, 12(14), 6965. https://doi.org/10.3390/app12146965