Selected Properties of Juices from Black Chokeberry (Aronia melanocarpa L.) Fruits Preserved Using the PEF Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Standard
2.2. Plant Materials
2.3. Pulsed Electric Field (PEF)
2.4. Dry Matter, Ash Content, Titratable Acidity, and Pectin
2.5. Analysis of Antioxidant Activity
2.6. Ultra-Weak Luminescence
2.7. Analysis of Sugars Using HPLC-ELSD Method
2.8. Identification and Quantification of Polyphenols Using the UPLC-PDA-MS Method
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activity and Ultra-Weak Luminescence
3.2. Analysis of Sugars
3.3. Comparison of Phenolic Compounds Detected in Juice of Black Chokeberry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šnebergrová, J.; Čížková, H.; Neradová, E.; Kapci, B.; Rajchl, A.; Voldřich, M. Variability of Characteristic Components of Aronia. Czech J. Food Sci. 2014, 32, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, C.; Li, G.; Chrubasik, S. The clinical effectiveness of chokeberry: A systematic review. Phytother. Res. 2010, 24, 1107–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenka, M.; Nawirska-Olszańska, A.; Oziembłowski, M. Analysis of Selected Properties of Fruits of Black Chokeberry (Aronia melanocarpa L.) from Organic and Conventional Cultivation. Appl. Sci. 2020, 10, 9096. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Jędrychowska, I.; Poręba, R.; Affelska-Jercha, A.; Turczyn, B.; Wojakowska, A.; Andrzejak, R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007, 59 (Suppl. 1), 177–182. [Google Scholar]
- Nowak, D.; Grąbczewska, Z.; Gośliński, M.; Obońska, K.; Dąbrowska, A.; Kubica, J. Effect of chokeberry juice consumption on antioxidant capacity, lipids profile and endothelial function in healthy people: A pilot study. Czech J. Food Sci. 2016, 34, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P. Berry Fruits: Compositional Elements, Biochemical Activities and the impact of their intake on human heath, Performance and Disease. Symposium. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef]
- Santos Buelga, C.; Scalbert, A. Proanthocyanidins and tannin like compounds-nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Khan, I.; Tango, C.N.; Miskeen, S.; Lee, B.H.; Oh, D.H. Hurdle technology: A novel approach for enhanced food quality and safety—A review. Food Control 2017, 73, 1426–1444. [Google Scholar] [CrossRef]
- Kempkes, M.A.; Tokusoglu, O. PEF systems for industrial food processing and related applications. In Improving Food Quality with Novel Food Processing Technologies; Tokusoglu, O., Swanson, B.G., Eds.; CRC Press: Boca Raton, FL, USA; CRC Press: London, UK; CRC Press: New York, NY, USA, 2015; pp. 427–453. [Google Scholar]
- Oziembłowski, M.; Maksimowski, D.; Miernik, A.; Tabor, S.; Nawirska-Olszańska, A.; Trenka, M. Wpływ pulsacyjnego pola elektrycznego (PEF) na parametry ultrasłabej luminescencji oraz redukcję liczby komórek wybranych drobnoustrojów w ekstraktach kawy typu cold brew. Prz. Elektrotechn. 2020, 96, 158–161. [Google Scholar] [CrossRef]
- Nakamuraa, K.; Hiramatsub, M. Ultra-weak photon emission from human hand: Influence of temperature and oxygen concentration on emission. J. Photochem. Photobiol. B Biol. 2005, 80, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Laager, F.; Park, S.-H.; Yang, J.-M.; Song, W.; Soh, K.-S. Effects of exercises on biophoton emission of the wrist. Eur. J. Appl. Physiol. 2008, 102, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Kiełabasa, P.; Dróżdż, T.; Nawara, P.; Dróżd, M. The use of bio-photons emission for the quality parameterization of food products. Prz. Elektrotech. 2017, 93, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Oziembłowski, M.; Dróżdż, M.; Kiełbasa, P.; Dróżdż, T.; Gąsiorski, A.; Nawara, P.; Tabor, S. Ultra słaba luminescencja (USL) jako potencjalna metoda oceny jakości żywności tradycyjnej. Prz. Elektrotech. 2017, 93, 131–134. [Google Scholar] [CrossRef]
- Trzyniec, K.; Kiełbasa, P.; Oziembłowski, M.; Dróżdż, M.; Nawara, P.; Posyłek, Z.; Leja, R. Using photons emission to evaluate the quality of apples. Prz. Elektrotech. 2017, 93, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Gałązka-Czarnecka, I.; Korzeniewska, E.; Czarnecki, A.; Sójka, M.; Kiełbasa, P.; Dróżdż, T. Evaluation of Quality of Eggs from Hens Kept in Caged and Free-Range Systems Using Traditional Methods and Ultra-Weak Luminescence. Appl. Sci. 2019, 9, 2430. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Yang, T.; Liang, Y. Integrating ultra-weak luminescence properties and multi-scale permutation entropy algorithm to analyze freshness degree of wheat kernel. Optik 2020, 218, 165099. [Google Scholar] [CrossRef]
- Oziembłowski, M. Influence of Pulsed Electric Fields (PEF) and Concentrated Microwave Field (CMF) on Selected Properties of Liquid Egg Products; Publishing House of the University of Life Sciences: Wrocław, Poland, 2019; pp. 70–71. (In Polish) [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horowitz, W., Latimer, G.E., Eds.; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- PN-90/A-75101/04; Przetwory Owocowe i Warzywne—Przygotowanie Próbek i Metody Badań Fizykochemicznych—Oznaczenie Kwasowości Ogólnej.
- Pijanowski, E.; Mrożewski, S.; Horubała, A.; Jarczyk, A. Technologia Produktów Owocowych i Warzywnych; T. I. PWRiL: Warszawa, Poland, 1973. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing Ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolniak-Ostek, J. Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem. 2016, 203, 491–497. [Google Scholar] [CrossRef]
- Białek, M.; Rutkowska, J.; Hallmann, E. Black chokeberry (Aronia melanocarpa) as potential component of functional food. ŻYWNOŚĆ Nauka Technol. Jakość 2012, 6, 21–30. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Pasławska, M.; Stępień, B.; Maciej Oziembłowski, M.; Sala, K.; Smorowska, A. Effect of Vacuum Impregnation with Apple-Pear Juice on Content of Bioactive Compounds and Antioxidant Activity of Dried Chokeberry Fruit. Foods 2020, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Med. 2008, 74, 1625–1635. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Wojdyło, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Oszmaiński, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef] [Green Version]
- Lachowicz, S.; Jan Oszmiański, J.; Kolniak-Ostek, J. Influence of different pectinolytic enzymes on bioactive compound content, antioxidant potency, colour and turbidity of chokeberry juice. Eur. Food Res. Technol. 2018, 244, 1907–1920. [Google Scholar] [CrossRef] [Green Version]
Dry Matter | Ash | Pectins | Titratable Acidity * | |
---|---|---|---|---|
% | ||||
J 1 | 24.9 ± 1.23 e | 0.83 ± 0.01 b | 0.57 ± 0.02 c | 1.31 ± 0.12 a |
J 2 | 27.6 ± 1.29 c | 0.80 ± 0.01 b,c | 0.59 ± 0.01 c | 1.24 ± 0.11 b |
J 3 | 24.8 ± 1.22 e | 0.96 ± 0.02 a | 0.53 ± 0.01 d | 1.22 ± 0.11 b |
J 4 | 23.2 ± 1.11 e,f | 0.61 ± 0.01 d | 0.48 ± 0.02 f | 0.98 ± 0.07 c,d |
J 5 | 23.4 ± 0.99 e,f | 0.74 ± 0.03 c | 0.47 ± 0.02 f | 1.23 ± 0.09 b |
J 6 | 28.2 ± 1.32 b | 0.73 ± 0.02 c | 0.38 ± 0.01 d | 1.01 ± 0.03 c |
PEF 1 | 26.7 ± 1.12 c,d | 0.61 ± 0.01 d | 0.82 ± 0.01 b | 1.36 ± 0.12 a |
PEF 2 | 29.1 ± 0.98 a | 0.74 ± 0.02 c | 0.89 ± 0.02 a | 1.26 ± 0.09 b |
PEF 3 | 27.3 ± 1.05 c | 0.83 ± 0.01 b | 0.58 ± 0.01 c | 1.21 ± 0.08 b |
PEF 4 | 25.9 ± 1.32 d | 0.63 ± 0.01 d | 0.50 ± 0.01 e | 1.04 ± 0.04 c |
PEF 5 | 26.0 ± 0.8 d | 0.75 ± 0.01 c | 0.81 ± 0.02 b | 1.32 ± 0.07 a |
PEF 6 | 30.0 ± 1.24 a | 0.75 ± 0.03 c | 0.61 ± 0.01 c | 1.06 ± 0.03 c |
ABTS | FRAP | Ultra-Weak Luminescence | |
---|---|---|---|
µmole/100 mL | - | ||
J 1 | 112.58 ± 2.12 a | 91.12 ± 1.02 a | 414.6 ± 32.85 a |
J 2 | 108.85 ± 3.00 b | 86.44 ± 2.19 b | 400.2 ± 13.18 b |
J 3 | 99.72 ± 3.17 c | 77.21 ± 2.89 d | 395.4 ± 16.91 c |
J 4 | 87.79 ± 2.34 e | 54.98 ± 3.01 g | 349.8 ± 26.36 f |
J 5 | 90.36 ± 1.22 d | 60.24 ± 2.79 f | 364.9 ± 29.78 d |
J 6 | 86.43 ± 2.12 e | 52.27 ± 1.68 h | 346.4 ± 25.29 g |
PEF 1 | 109.44 ± 5.24 b | 82.58 ± 2.12 c | 418.9 ± 28.34 a |
PEF 2 | 95.83 ± 1.54 c | 76.92 ± 2.84 d | 404.9 ± 24.11 b |
PEF 3 | 82.14 ± 3.69 f | 72.99 ± 2.11 e | 400.7 ± 18.09 c |
PEF 4 | 72.84 ± 3.39 h | 49.95 ± 2.97 i | 352.2 ± 28.45 e |
PEF 5 | 79.99 ± 2.82 g | 42.99 ± 1.37 j | 369.2 ± 22.32 d |
PEF 6 | 62.00 ± 2.43 i | 43.13 ± 2.78 j | 353.9 ± 25.36 e |
Fructose | Sorbitol | Glucose | Sucrose | Total | |
---|---|---|---|---|---|
g/100 mL | |||||
J 1 | 1.54 ± 0.04 d | 1.97 ± 0.03 j | 2.82 ± 0.01 e | 0.00 | 6.33 |
J 2 | 1.41 ± 0.03 e,f | 3.16 ± 0.01 d | 3.36 ± 0.03 c | 0.00 | 7.93 |
J 3 | 1.30 ± 0.04 g | 2.90 ± 0.02 e | 3.76 ± 0.04 a | 0.00 | 7.96 |
J 4 | 1.16 ± 0.01 h | 2.69 ± 0.01 f | 1.87 ± 0.02 g | 0.00 | 5.73 |
J 5 | 1.01 ± 0.01 i | 2.08 ± 0.01 i | 1.92 ± 0.01 g | 0.00 | 5.01 |
J 6 | 0.85 ± 0.01 j | 2.20 ± 0.02 d | 2.69 ± 0.02 d | 0.00 | 5.75 |
PEF 1 | 1.73 ± 0.03 b | 3.65 ± 0.03 c | 3.47 ± 0.02 b | 0.07 ± 0.00 b | 8.92 |
PEF 2 | 1.63 ± 0.02 c | 4.05 ± 0.04 a | 3.47 ± 0.02 b | 0.10 ± 0.00 a | 9.25 |
PEF 3 | 2.26 ± 0.02 a | 3.89 ± 0.04 b | 3.51 ± 0.03 b | 0.05 ± 0.00 c | 9.71 |
PEF 4 | 0.96 ± 0.02 i,j | 2.45 ± 0.02 h | 3.17 ± 0.01 d | 0.00 | 6.59 |
PEF 5 | 1.18 ± 0.01 h | 2.51 ± 0.01 g | 2.62 ± 0.01 f | 0.00 | 6.30 |
PEF 6 | 1.46 ± 0.04 e | 2.42 ± 0.02 h | 2.96 ± 0.02 e | 0.00 | 6.85 |
Compounds | Juice | PEF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
J 1 | J 2 | J 3 | J 4 | J 5 | J 6 | PEF 1 | PEF 2 | PEF 3 | PEF 4 | PEF 5 | PEF 6 | |
mg/100 mL | ||||||||||||
Anthocyanins | ||||||||||||
Cyanidin-3-hexoside-(epi)catechine | 3.96 ± 0.29 | 4.17 ± 0.11 | 3.07 ± 0.18 | 2.08 ± 0.15 | 1.97 ± 0.12 | 1.92 ± 0.05 | 4.02 ± 0.41 | 4.24 ± 0.19 | 3.12 ± 0.26 | 2.46 ± 0.17 | 2.06 ± 0.12 | 1.99 ± 0.08 |
Cyanidin-3-pentoside-(epi)catechine | 1.12 ± 0.09 | 1.18 ± 0.06 | 1.19 ± 0.11 | 1.07 ± 0.04 | 0.98 ± 0.01 | 0.95 ± 0.01 | 1.27 ± 0.03 | 1.24 ± 0.11 | 1.25 ± 0.12 | 1.13 ± 0.08 | 1.06 ± 0.01 | 1.03 ± 0.04 |
Cyanidin-3-hexoside- (epi)cat-(epi)cat | 9.78 ± 0.79 | 8.95 ± 0.51 | 9.22 ± 0.39 | 8.26 ± 0.43 | 8.14 ± 0.56 | 8.26 ± 0.37 | 9.95 ± 0.92 | 9.13 ± 0.87 | 9.68 ± 0.66 | 8.46 ± 0.83 | 8.28 ± 0.76 | 8.45 ± 0.39 |
Cyanidin-3-O-galctoside | 606.36 ± 52.09 | 595.22 ± 48.11 | 597.64 ± 47.35 | 577.59 ± 38.39 | 562.98 ± 51.12 | 543.48 ± 49.27 | 616.32 ± 54.26 | 601.67 ± 49.39 | 597.64 ± 44.73 | 586.21 ± 52.39 | 563.31 ± 48.33 | 549.98 ± 53.78 |
Cyanidin-3-O-glucoside | 21.54 ± 2.09 | 24.98 ± 2.11 | 18.12 ± 1.39 | 19.24 ± 1.34 | 19.53 ± 1.22 | 21.79 ± 1.33 | 21.72 ± 1.34 | 25.04 ± 2.18 | 18.33 ± 1.63 | 19.56 ± 1.66 | 19.68 ± 1.28 | 21.98 ± 1.99 |
Cyanidin-3-O-arabinoside | 283.99 ± 21.85 | 266.04 ± 19.15 | 228.41 ± 18.62 | 252.98 ± 22.32 | 239.28 ± 21.53 | 238.27 ± 20.69 | 298.14 ± 22.85 | 277.93 ± 21.87 | 232.48 ± 21.45 | 253.46 ± 22.22 | 242.36 ± 22.36 | 240.64 ± 21.84 |
Cyanidin-3-O-xyloside | 28.99 ± 2.64 | 26.33 ± 2.11 | 28.42 ± 2.39 | 23.02 ± 1.93 | 21.78 ± 1.97 | 23.88 ± 1.14 | 29.02 ± 2.39 | 26.35 ± 2.45 | 28.48 ± 2.32 | 23.11 ± 2.12 | 21.81 ± 1.99 | 23.92 ± 2.34 |
Phenolic acid | ||||||||||||
Neochlorogenic acid | 159.38 ± 12.97 | 158.39 ± 9.89 | 138.49 ± 10.14 | 124.32 ± 12.08 | 88.29 ± 6.14 | 97.62 ± 3.76 | 166.24 ± 0.02 | 150.77 ± 0.02 | 139.92 ± 0.02 | 125.37 ± 0.02 | 89.86 ± 0.02 | 98.46 ± 0.02 |
3-O-p-Coumaroylquinic acid | 6.15 ± 0.32 | 5.74 ± 0.47 | 5.86 ± 0.39 | 5.04 ± 0.36 | 5.08 ± 0.28 | 4.43 ± 0.17 | 6.32 ± 0.54 | 5.84 ± 0.42 | 5.98 ± 0.45 | 5.11 ± 0.37 | 5.12 ± 0.44 | 4.68 ± 0.39 |
Chlorogenic acid | 91.75 ± 6.77 | 87.09 ± 5.98 | 83.97 ± 7.31 | 73.98 ± 4.35 | 77.23 ± 6.39 | 75.89 ± 3.79 | 91.92 ± 8.31 | 87.29 ± 7.98 | 84.06 ± 7.86 | 74.02 ± 7.12 | 77.48 ± 7.31 | 75.97 ± 7.22 |
Cryptochlorogenic acid | 5.24 ± 0.44 | 4.51 ± 0.18 | 4.74 ± 0.39 | 3.28 ± 0.26 | 4.03 ± 0.13 | 3.26 ± 0.08 | 5.36 ± 0.54 | 4.54 ± 0.44 | 4.78 ± 0.46 | 3.32 ± 0.24 | 4.12 ± 0.38 | 3.48 ± 0.26 |
Di- caffeic quinic acid | 1.93 ± 0.09 | 1.75 ± 0.16 | 2.02 ± 0.19 | 2.03 ± 0.17 | 1.92 ± 0.12 | 1.67 ± 0.13 | 2.06 ± 0.19 | 1.83 ± 0.13 | 2.1 ± 0.17 | 2.13 ± 0.16 | 1.98 ± 0.12 | 1.74 ± 0.11 |
Flavanols | ||||||||||||
Quercetin-dihexoside | 2.76 ± 0.16 | 3.06 ± 0.24 | 3.11 ± 0.28 | 1.96 ± 0.14 | 2.39 ± 0.15 | 2.46 ± 0.22 | 2.81 ± 0.18 | 3.16 ± 0.24 | 3.17 ± 0.29 | 2.03 ± 0.16 | 2.42 ± 0.21 | 2.48 ± 0.17 |
Quercetin- 3-O-vicianoside | 3.89 ± 0.28 | 4.28 ± 0.36 | 4.56 ± 0.39 | 3.38 ± 0.25 | 3.12 ± 0.29 | 3.09 ± 0.21 | 4.04 ± 0.27 | 4.32 ± 0.36 | 4.59 ± 0.42 | 3.42 ± 0.28 | 3.15 ± 0.15 | 3.12 ± 0.25 |
Quercetin 3-robinobioside | 2.23 ± 0.14 | 2.33 ± 0.18 | 2.15 ± 0.12 | 1.44 ± 0.09 | 1.47 ± 0.09 | 1.59 ± 0.08 | 2.27 ± 0.21 | 2.36 ± 0.19 | 2.18 ± 0.09 | 1.47 ± 0.08 | 1.51 ± 0.07 | 1.62 ± 0.05 |
Quercetin 3-O-rutinoside | 9.87 ± 0.06 | 10.45 ± 0.94 | 9.56 ± 0.64 | 8.26 ± 0.36 | 9.09 ± 0.74 | 8.76 ± 0.62 | 9.92 ± 0.36 | 10.51 ± 0.83 | 9.59 ± 0.64 | 8.28 ± 0.28 | 9.12 ± 0.85 | 8.82 ± 0.34 |
Quercetin-3-O-galctoside | 31.99 ± 0.20 | 37.99 ± 2.11 | 35.97 ± 3.12 | 30.83 ± 2.96 | 30.56 ± 2.1 = 83 | 31.96 ± 2.67 | 32.05 ± 2.99 | 38.12 ± 3.18 | 36.03 ± 2.86 | 30.88 ± 2.56 | 30.62 ± 2.44 | 31.99 ± 2.78 |
Quercetin-3-O-glucoside | 26.79 ± 0.13 | 26.21 ± 1.43 | 26.14 ± 2.04 | 22.94 ± 1.98 | 22.37 ± 1.66 | 23.02 ± 1.94 | 26.92 ± 1.37 | 26.33 ± 1.43 | 26.38 ± 2.13 | 23.12 ± 1.75 | 22.58 ± 1.55 | 23.16 ± 1.83 |
Isorhamnetin pentosylhexoside | 5.81 ± 0.44 | 5.67 ± 0.48 | 5.91 ± 0.44 | 5.36 ± 0.46 | 5.39 ± 0.51 | 5.42 ± 0.42 | 5.89 ± 0.34 | 5.62 ± 0.47 | 6.05 ± 0.54 | 5.42 ± 0.49 | 5.48 ± 0.46 | 5.54 ± 0.44 |
Isorhamnetin rhamnosylhexosideisomer | 2.95 ± 0.22 | 2.91 ± 0.19 | 2.83 ± 0.21 | 2.86 ± 0.20 | 2.61 ± 0.18 | 2.75 ± 0.17 | 3.02 ± 0.29 | 2.99 ± 0.22 | 2.92 ± 0.21 | 2.9 ± 0.16 | 2.69 ± 0.19 | 2.82 ± 0.15 |
Flavan-3-ole | ||||||||||||
(+) Catechin | 17.67 ± 1.33 | 17.78 ± 1.18 | 17.99 ± 0.92 | 15.78 ± 1.12 | 15.75 ± 0.99 | 16.21 ± 0.86 | 17.98 ± 0.02 | 17.76 ± 0.39 | 17.82 ± 0.39 | 15.94 ± 0.39 | 15.98 ± 0.39 | 16.46 ± 0.39 |
Procyanidin B2 | 3.78 ± 0.22 | 3.27 ± 0.18 | 3.29 ± 0.32 | 3.03 ± 0.26 | 3.09 ± 0.24 | 3.06 ± 0.31 | 3.94 ± 0.31 | 3.53 ± 0.29 | 3.43 ± 0.30 | 3.09 ± 0.26 | 3.11 ± 0.29 | 3.08 ± 0.24 |
(−) Epicatechin | 154.94 ± 13.33 | 158.52 ± 12.96 | 163.12 ± 14.39 | 153.89 ± 15.01 | 152.86 ± 13.33 | 153.86 ± 14.88 | 156.44 ± 15.12 | 159.99 ± 15.36 | 165.84 ± 15.88 | 154.32 ± 14.43 | 153.12 ± 14.88 | 153.24 ± 14.32 |
Procyanidin polymers | 908.22 ± 69.09 | 889.95 ± 71.11 | 909.85 ± 81.75 | 828.38 ± 79.44 | 827.46 ± 78.98 | 825.39 ± 76.19 | 921.83 ± 91.04 | 892.13 ± 85.11 | 914.36 ± 89.17 | 832.32 ± 71.99 | 833.87 ± 72.67 | 839.31 ± 79.82 |
Flavonones | ||||||||||||
Eriodictyol-glucuronide | 43.93 ± 2.98 | 47.12 ± 4.07 | 44.99 ± 3.32 | 38.22 ± 2.43 | 39.08 ± 3.16 | 40.56 ± 3.95 | 44.01 ± 3.96 | 47.19 ± 3.33 | 45.04 ± 3.85 | 38.34 ± 2.66 | 39.16 ± 2.43 | 40.82 ± 3.18 |
Total | 2435.02 a | 2393.89 b | 2350.62 c | 2209.22 d | 2146.45 e | 2139.55 e | 2483.46 a | 2409.88 b | 2365.22 c | 2225.87 d | 2159.93 e | 2164.78 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oziembłowski, M.; Trenka, M.; Czaplicka, M.; Maksimowski, D.; Nawirska-Olszańska, A. Selected Properties of Juices from Black Chokeberry (Aronia melanocarpa L.) Fruits Preserved Using the PEF Method. Appl. Sci. 2022, 12, 7008. https://doi.org/10.3390/app12147008
Oziembłowski M, Trenka M, Czaplicka M, Maksimowski D, Nawirska-Olszańska A. Selected Properties of Juices from Black Chokeberry (Aronia melanocarpa L.) Fruits Preserved Using the PEF Method. Applied Sciences. 2022; 12(14):7008. https://doi.org/10.3390/app12147008
Chicago/Turabian StyleOziembłowski, Maciej, Magdalena Trenka, Marta Czaplicka, Damian Maksimowski, and Agnieszka Nawirska-Olszańska. 2022. "Selected Properties of Juices from Black Chokeberry (Aronia melanocarpa L.) Fruits Preserved Using the PEF Method" Applied Sciences 12, no. 14: 7008. https://doi.org/10.3390/app12147008
APA StyleOziembłowski, M., Trenka, M., Czaplicka, M., Maksimowski, D., & Nawirska-Olszańska, A. (2022). Selected Properties of Juices from Black Chokeberry (Aronia melanocarpa L.) Fruits Preserved Using the PEF Method. Applied Sciences, 12(14), 7008. https://doi.org/10.3390/app12147008