Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solid-Phase Microextraction (SPME) and GC-MS Analysis
- (i)
- retention indices calculated using the retention index calculator were compared to values in the NIST17 database,
- (ii)
- spectra were compared to the NIST17 database,
- (iii)
- retention times were compared to retention times of authentic standards.
2.2. LC-MS Analysis
3. Results and Discussion
3.1. Caffeine and Chlorogenic Acid in Cold Brew Samples
3.2. Caffeine and Chlorogenic Acid in Experimental Model Samples
3.3. Volatile Compounds of Cold Brew Samples
3.3.1. Aromatic Alkyl Pyrazines
3.3.2. Pyridine
3.3.3. Furans with Alcohol Function
3.3.4. Furans with Ketone Function
3.3.5. Alkylthiazole
3.3.6. Furans with Aldehyde Function
- (i)
- the Maillard reaction induced by saccharides and nitrogenous compounds,
- (ii)
- the direct cleavage of pentose,
- (iii)
- indirect conversion from pentosan, which only made a minor contribution [49].
3.3.7. Terpenes
3.3.8. Aromatic Aldehyde
3.3.9. Unsaturated Aliphatic Alcohols
3.3.10. Saturated and Unsaturated Aliphatic Ketones
3.3.11. Furfuryl Ester
3.3.12. Aromatic Hydrocarbons
3.3.13. Pyrrole with Ketone Function
3.3.14. Alkylpyrazines
3.3.15. Alicyclic Ketone (Terpenes Derivatives)
3.3.16. Cyclic aromatic Alcohols (Terpenes Derivative)
3.3.17. Pyrrole
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angeloni, G.; Guerrini, L.; Masella, P.; Innocenti, M.; Bellumori, M.; Parenti, A. Characterization and comparison of cold brew and cold drip coffee extraction methods. J. Sci. Food Agric. 2019, 99, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J. Unlocking the mystery of cold brew a deeper look into the chemistry. RoastMagazine, September 2018; 41–52. [Google Scholar]
- Rao, N.Z.; Fuller, M. Acidity and Antioxidant Activity of Cold Brew Coffee. Sci. Rep. 2018, 8, 16030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee Using High-Performance Liquid Chromatography and Solid-Phase Microextraction—Gas Chromatography-Mass Spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef] [PubMed]
- Claassen, L.; Rinderknecht, M.; Porth, T.; Röhnisch, J.; Seren, H.Y.; Scharinger, A.; Gottstein, V.; Noack, D.; Schwarz, S.; Winkler, G. Cold Brew Coffee—Pilot Studies on Definition, Extraction, Consumer Preference, Chemical Characterization and Microbiological Hazards. Foods 2021, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.L.M.; Rocha, E.P.A.; Carneiro, A.d.C.O.; Gomes, F.J.B.; Batalha, L.A.R.; Vakkilainen, E.; Cardoso, M. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 2019, 120, 68–76. [Google Scholar] [CrossRef]
- Michalczyk, M.; Kuczewski, D. Zmiany zawartości składników o charakterze prozdrowotnym w przechowywanych sorbetach z owoców jagodowych. Żywność Nauka Technol. Jakość 2012, 19, 4. [Google Scholar]
- Arnot, B. The Coffee Lover’s Diet: Change Your Coffee, Change Your Life; HarperCollins Publishers Inc: New York, NY, USA, 2017. [Google Scholar]
- Yen, G.-C.; Chen, H.-Y.; Peng, H.-H. Antioxidant and pro-oxidant effects of various tea extracts. J. Agric. Food Chem. 1997, 45, 30–34. [Google Scholar] [CrossRef]
- Poltronieri, P.; Rossi, F. Challenges in specialty coffee processing and quality assurance. Challenges 2016, 7, 19. [Google Scholar] [CrossRef]
- Mazzafera, P.; Robinson, S.P. Characterization of polyphenol oxidase in coffee. Phytochemistry 2000, 55, 285–296. [Google Scholar] [CrossRef]
- Fuller, M.; Rao, N.Z. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee. Sci. Rep. 2017, 7, 17979. [Google Scholar] [CrossRef] [Green Version]
- dePaula, J.; Farah, A. Caffeine consumption through coffee: Content in the beverage, metabolism, health benefits and risks. Beverages 2019, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Nonthakaew, A.; Matan, N.; Aewsiri, T. Caffeine in foods and its antimicrobial activity. Int. Food Res. J. 2015, 22, 9–14. [Google Scholar]
- Dankowska, A.; Misiak, P. Oznaczanie zawartości kofeiny w naparach z herbat przy wykorzystywaniu spektroskopii UV oraz NIR. In SkładnikiBioaktywneSurowców i ProduktówRoślinnych; Polskie Towarzystwo Technologów Żywności: Kraków, Porland, 2014. [Google Scholar]
- Kyroglou, S.; Thanasouli, K.; Vareltzis, P. Process characterization and optimization of cold brew coffee: Effect of pressure, temperature, time and solvent volume on yield, caffeine and phenol content. J. Sci. Food Agric. 2021, 101, 4789–4798. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Jiang, G.-H.; Park, J.S.; Lee, K.-C.; Seok, Y.Y.; Eun, J.B. Effects of ultrasonication, agitation and stirring extraction techniques on the physicochemical properties, health-promoting phytochemicals and structure of cold-brewed coffee. J. Sci. Food Agric. 2019, 99, 290–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, X.; Manickavasagan, A.; Lim, L.-T. Extraction and physicochemical characteristics of high pressure-assisted cold brew coffee. Future Foods 2022, 5, 100113. [Google Scholar] [CrossRef]
- Wang, X.; Lim, L.-T. Modeling study of coffee extraction at different temperature and grind size conditions to better understand the cold and hot brewing process. J. Food Process. Eng. 2021, 44, e13748. [Google Scholar] [CrossRef]
- Zheng, L.; Chuntang, Z.; Yuan, Z.; Wei, Z.; Igor, C. Coffee cell walls—Composition, influence on cup quality and opportunities for coffee improvements. Food Qual. Saf. 2021, 5, fyab012. [Google Scholar]
- Hyong, S.; Chu, M.; Park, H.; Park, J.; Lee, K.-G. Analysis of α-dicarbonyl compounds and 4-methylimidazole in coffee made with various roasting and brewing conditions. LWT 2021, 151, 112231. [Google Scholar] [CrossRef]
- Córdoba, N.; Moreno, F.L.; Osorio, C.; Velásquez, S.; Fernandez-Alduenda, M.; Ruiz-Pardo, Y. Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT 2021, 145, 111363. [Google Scholar] [CrossRef]
- Park, S.-H.; Jo, A.; Lee, K.-G. Effect of various roasting, extraction and drinking conditions on furan and 5-hydroxymethylfurfural levels in coffee. Food Chem. 2021, 358, 129806. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Boo, H.; Chung, M.-S. Effects of extraction conditions on acrylamide/furan content, antioxidant activity, and sensory properties of cold brew coffee. Food Sci. Biotechnol. 2020, 29, 1071–1080. [Google Scholar] [CrossRef]
- Yao, T. Brew Methods Effect on Coffee Flavor and Aroma. A Thesis, Texas A&M University, College Station, TX, USA, 2017. [Google Scholar]
- Müller, R.; Rappert, S. Pyrazines: Occurrence, formation and biodegradation. Appl. Microbiol. Biotechnol. 2010, 85, 1315–1320. [Google Scholar] [CrossRef] [PubMed]
- Dwiranti, N.S.; Ardiansyah, A.; Asiah, N. Sensory attributes of cold brew coffee products at various resting time after roasting process. Pelita Perkeb. 2019, 35, 42–50. [Google Scholar]
- Zhang, Z.; Wei, T.; Hou, J.; Li, G.; Yu, S.; Xin, W. Tetramethylpyrazine scavenges superoxide anion and decreases nitric oxide production in human polymorphonuclear leukocytes. Life Sci. 2003, 72, 2465–2472. [Google Scholar] [CrossRef]
- Flament, I. Coffee Flavor Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Kremer, J.I.; Pickard, S.; Stadlmair, L.F.; Glaß-Theis, A.; Buckel, L.; Bakuradze, T.; Eisenbrand, G.; Richling, E. Alkylpyrazines from coffee are extensively metabolized to pyrazine carboxylic acids in the human body. Mol. Nutr. Food Res. 2019, 63, 1801341. [Google Scholar] [CrossRef] [Green Version]
- Koehler, P.E.; Odell, G.V. Factors affecting the formation of pyrazine compounds in sugar-amine reactions. J. Agric. Food Chem. 1970, 18, 895–898. [Google Scholar] [CrossRef]
- Adams, A.; De Kimpe, N. Formation of pyrazines from ascorbic acid and amino acids under dry-roasting conditions. Food Chem. 2009, 115, 1417–1423. [Google Scholar] [CrossRef]
- Kłosowski, G.; Błajet-Kosicka, A. Mechanisms of pyrazine compounds formation and validation of raw material thermal processing during technological process based on the presence of pyrazine in raw spirits. Biotechnologia 2010, 1, 147–160. [Google Scholar]
- Abdelwareth, A.; Zayed, A.; Farag, M.A. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chem. 2021, 349, 129162. [Google Scholar] [CrossRef]
- Yu, A.-N.; Zhang, A.-D. The effect of pH on the formation of aroma compounds produced by heating a model system containing l-ascorbic acid with l-threonine/l-serine. Food Chem. 2010, 119, 214–219. [Google Scholar] [CrossRef]
- Jinap, M.S.; Jamilah, B.; Nazamid, S. Effect of polyphenol concentration on pyrazine formation during cocoa liquor roasting. Food Chem. 2004, 85, 73–80. [Google Scholar] [CrossRef]
- Yang, N.; Liu, C.; Liu, X.; Degn, T.K.; Munchow, M.; Fisk, I. Determination of volatile marker compounds of common coffee roast defects. Food Chem. 2016, 211, 206–214. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Teipel, J.; Scharinger, A.; Kuballa, T.; Walch, S.G.; Grosch, F.; Bunzel, M.; Okaru, A.O.; Schwarz, S. Fully automated identification of coffee species and simultaneous quantification of furfuryl alcohol using NMR spectroscopy. J. AOAC Int. 2020, 103, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Albouchi, A.; Murkovic, M. Formation kinetics of furfuryl alcohol in a coffee model system. Food Chem. 2018, 243, 91–95. [Google Scholar] [CrossRef]
- Naudé, Y.; Rohwer, E.R. Investigating the coffee flavour in South African Pinotage wine using novel offline olfactometry and comprehensive gas chromatography with time of flight mass spectrometry. J. Chromatogr. A 2013, 1271, 176–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haile, M.; Bae, H.M.; Kang, W.H. Comparison of the antioxidant activities and volatile compounds of coffee beans obtained using digestive bio-processing (elephant dung coffee) and commonly known processing methods. Antioxidants 2020, 9, 408. [Google Scholar] [CrossRef]
- Näsman, J.H. 3-Methyl-2(5H)-furanone. Org. Synth. 1993, 8, 396. [Google Scholar]
- Tressl, R.; Rewicki, D.; Helak, B.; Kamperschroer, H. Formation of pyrrolidines and piperidines on heating L-proline with reducing sugars. J. Agric. Food Chem. 1985, 33, 924–928. [Google Scholar] [CrossRef]
- Cherry, J.P. Electrophoretic observation on protein changes and variability during development of the peanut. J. Agric. FoodChem. 1974, 22, 723–724. [Google Scholar] [CrossRef]
- Gianturco, M.; Giammarino, A.; Friedel, P.; Flanagan, V. The volatile constituents of coffee—IV: Furanic and pyrrolic compounds. Tetrahedron 1964, 20, 2951–2961. [Google Scholar] [CrossRef]
- Slaughter, J.C. The naturally occurring furanones: Formation and function from pheromone to food. Biol. Rev. 1999, 74, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Maga, J.A.; Katz, I. The role of sulfur compounds in food flavor part I: Thiazoles. CRCCrit. Rev. Food Sci. Nutr. 1975, 6, 153–176. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Z.; Liu, S.; Zhu, S.; Li, G.; Zhong, F.; Mao, J. Formation pathways and precursors of furfural during Zhenjiang aromatic vinegar production. Food Chem. 2021, 354, 129503. [Google Scholar] [CrossRef]
- Prodolliet, J.; Bruelhart, M.; Blanc, M.B.; Leloup, V.; Cherk, G.; Donnelly, C.M.; Viani, R. Adulteration of Soluble Coffee with Coffee Husks and Parchments. J. AOAC Int. 2020, 78, 761–767. [Google Scholar] [CrossRef]
- Muratore, G.; Licciardello, F.; Restuccia, C.; Puglisi, M.L.; Giudici, P. Role of Different Factors Affecting the Formation of 5-Hydroxymethyl-2-furancarboxaldehyde in Heated Grape Must. J. Agric. Food Chem. 2006, 54, 860–863. [Google Scholar] [CrossRef]
- Murkovic, M.; Pichler, N. Analysis of 5-hydroxymethylfurfual in coffee, dried fruits and urine. Mol. Nutr. Food Res. 2006, 50, 842–846. [Google Scholar] [CrossRef]
- Chaichi, M.; Ghasemzadeh-Mohammadi, V.; Hashemi, M.; Mohammadi, A. Furanic compounds and furfural in different coffee products by headspace liquid-phase micro-extraction followed by gas chromatography–mass spectrometry: Survey and effect of brewing procedures. Food Addit. Contam. Part B 2015, 8, 73–80. [Google Scholar] [CrossRef]
- Petisca, C.; Pérez-Palacios, T.; Pinho, O.; Ferreira, I.M. Optimization and application of a HS-SPME-GC-MS methodology for quantification of furanic compounds in espresso coffee. Food Anal. Methods 2014, 7, 81–88. [Google Scholar] [CrossRef]
- Najda, A. Roślinnesubstancjelotne–olejkieteryczne. Episteme 2015, 2, 65–77. [Google Scholar]
- Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hidalgo, F.J.; Zamora, R. Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products. Food Chem. X 2019, 2, 100037. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Hussain, S.A.; Ijaz, M.U.; Ullah, S.; Pasha, I.; Suleria, H.A.R. Farm to consumer: Factors affecting the organoleptic characteristics of coffee. II: Postharvest processing factors. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1184–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toci, A.T.; Farah, A. Volatile compounds as potential defective coffee beans’ markers. Food Chem. 2008, 108, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Gancarz, M.; Dobrzański, B.; Oniszczuk, T.; Combrzyński, M.; Ćwikła, D.; Rusinek, R. Detection and differentiation of volatile compound profiles in roasted coffee arabica beans from different countries using an electronic nose and GC-MS. Sensors 2020, 20, 2124. [Google Scholar]
- Semikolenov, V.A.; Ilyna, I.I.; Simakova, I.L. Linalool synthesis from α-pinene: Kinetic peculiarities of catalytic steps. Appl. Catal. A Gen. 2001, 211, 91–107. [Google Scholar] [CrossRef]
- Bonnländer, B.; Cappuccio, R.; Liverani, F.S.; Winterhalter, P. Analysis of enantiomeric linalool ratio in green and roasted coffee. Flavour Fragr. J. 2006, 21, 637–641. [Google Scholar] [CrossRef]
- Kobori, C.; Wagner, R.; Padula, M.; Rodriguez-Amaya, D. Formation of volatile compounds from lycopene by autoxidation in a model system simulating dehydrated foods. Food Res. Int. 2014, 63, 49–54. [Google Scholar] [CrossRef]
- Wang, L.; Baldwin, E.; Luo, W.; Zhao, W.; Brecht, J.; Bai, J. Key tomato volatile compounds during postharvest ripening in response to chilling and pre-chilling heat treatments. Postharvest Biol. Technol. 2019, 154, 11–20. [Google Scholar] [CrossRef]
- Jaramillo, J.; Torto, B.; Mwenda, D.; Troeger, A.; Borgemeister, C.; Poehling, H.M.; Francke, W. Coffee berry borer joins bark beetles in coffee klatch. PLoS ONE 2013, 8, e74277. [Google Scholar] [CrossRef] [Green Version]
- Soares, M.; Christen, P.; Pandey, A.; Soccol, C.R. Fruity flavour production by Ceratocystisfimbriata grown on coffee husk in solid-state fermentation. Process. Biochem. 2000, 35, 857–861. [Google Scholar] [CrossRef]
- Pereira, G.V.d.M.; de Carvalho Neto, D.P.; Medeiros, A.B.P.; Soccol, V.T.; Neto, E.; Woiciechowski, A.L.; Soccol, C.R. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Int. J. Food Sci. Technol. 2016, 51, 1689–1695. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
- Mathpati, A.C.; Badgujar, K.C.; Bhanage, B.M. Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Enzyme Microb. Technol. 2016, 84, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Poulose, A.J.; Croteau, R. Biosynthesis of aromatic monoterpenes: Conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch. Biochem. Biophys. 1978, 187, 307–314. [Google Scholar] [CrossRef]
- Alaiz, M.; Zamora, R.; Hidalgo, F.J. Antioxidative Activity of Pyrrole, Imidazole, Dihydropyridine, and Pyridinium Salt Derivatives Produced in Oxidized Lipid/Amino Acid Browning Reactions. J. Agric. Food Chem. 1996, 44, 686–691. [Google Scholar] [CrossRef]
- Shen, S.-C.; Tseng, K.-C.; Wu, J.S.-B. An analysis of Maillard reaction products in ethanolic glucose–glycine solution. Food Chem. 2007, 102, 281–287. [Google Scholar] [CrossRef]
- Yanagimoto, K.; Lee, K.-G.; Ochi, H.; Shibamoto, T. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J. Agric. Food Chem. 2002, 50, 5480–5484. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Z.; Zou, Y.; He, R.; Ju, X.; Yuan, J. Effect of static-state fermentation on volatile composition in rapeseed meal. J. Sci. Food Agric. 2020, 100, 2145–2152. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Y.; Tong, J.; Xu, Y. An Alkylpyrazine Synthesis Mechanism Involving L-Threonine-3-Dehydrogenase Describes the Production of 2,5-Dimethylpyrazine and 2,3,5-Trimethylpyrazine by Bacillus subtilis. Appl. Environ. Microbiol. 2019, 85, e01807-19. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Del Terra, L.; Lonzarich, V.; Asquini, E.; Navarini, L.; Graziosi, G.; Liverani, F.S.; Pallavicini, A. Functional characterization of three Coffea arabica L. monoterpene synthases: Insights into the enzymatic machinery of coffee aroma. Phytochemistry 2013, 89, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Osvaldo Cori, M. Enzymic aspects of the biosynthesis monoterpenes in plants. Phytochemistry 1983, 22, 331–341. [Google Scholar] [CrossRef]
- Machado, A.; García-Peregrín, E.; Mayor, F. Synthesis of linalool and 4-terpineol from [14C]mevalonic acid in Pinuspinaster. Plant Sci. Lett. 1974, 2, 83–87. [Google Scholar] [CrossRef]
- Campo, E.; Ferreira, V.; Escudero, A.; Cacho, J. Prediction of the Wine Sensory Properties Related to Grape Variety from Dynamic-Headspace Gas Chromatography−Olfactometry Data. J. Agric. Food Chem. 2005, 53, 5682–5690. [Google Scholar] [CrossRef]
- Tsegay, G.; Redi-Abshiro, M.; Chandravanshi, B.S.; Ele, E.; Mohammed, A.M.; Mamo, H. Volatile profile of green coffee beans from Coffeaarabica L. plants grown at different altitudes in Ethiopia. Bull. Chem. Soc. Ethiop. 2019, 33, 401–413. [Google Scholar] [CrossRef]
- Füllemann, D.; Neiens, S.D.; Steinhaus, M. Impact of processing on important cocoa off-flavour compounds. Eur. Food Res. Technol. 2022, 248, 197–205. [Google Scholar] [CrossRef]
- Arevalo-Villena, M.; Bartowsky, E.J.; Capone, D.; Sefton, M.A. Production of indole by wine-associated microorganisms under oenological conditions. Food Microbiol. 2010, 27, 685–690. [Google Scholar] [CrossRef]
Compound | MRM Transition m/z (Q1-> Q3) | Q1 (V) | CE (V) | Q3 (V) |
---|---|---|---|---|
Caffeine | 195.2→ 138.10 | −10.0 | −22 | −22.0 |
195.2→ 42.15 | −10.0 | −36 | −15.0 | |
Chlorogenic acid | 355.2→ 163.05 | −19.0 | −15 | −27.0 |
355.2→ 89.10 | −11.0 | −55 | −30.0 |
Cold Brew Samples | Time | Temperature | Caffeine Concentration (mg/L) | Chlorogenic Acid Concentration (mg/ L) |
---|---|---|---|---|
A | 6 h | 5 °C | 460.2 ± 8.1 1 | 1036.2 ± 22.5 1 |
15 °C | 516.1 ± 11.7 | 1034.5 ± 23.2 | ||
25 °C | 471.2 ± 9.4 | 919.4 ± 4.7 | ||
12 h | 5 °C | 474.6 ± 10.6 | 902.5 ± 12.5 | |
15 °C | 526. ± 26.2 | 930.5 ± 29.4 | ||
25 °C | 473.5 ± 6.5 | 931.9 ± 6.9 | ||
24 h | 5 °C | 540.4 ± 24.3 | 949.2 ± 16.3 | |
15 °C | 497.4 ± 10.8 | 964.0 ± 11.6 | ||
25 °C | 500.9 ± 9.9 | 921.4 ± 29.4 | ||
B | 6 h | 5 °C | 631.8 ± 20.4 | 970.7 ± 17.8 |
15 °C | 655.5 ± 23.1 | 845.4 ± 25.2 | ||
25 °C | 608.4 ± 32.7 | 839.5 ± 43.1 | ||
12 h | 5 °C | 603.6 ± 35.0 | 739.3 ± 57.6 | |
15 °C | 608.3 ± 19.3 | 780.2 ± 39.0 | ||
25 °C | 611.4 ± 8.5 | 755.9 ± 45.6 | ||
24 h | 5 °C | 643.1 ± 22.0 | 811.8 ± 43.2 | |
15 °C | 579.9 ± 22.4 | 769.8 ± 61.1 | ||
25 °C | 590.4 ± 28.6 | 770.1 ± 21.7 | ||
C | 6 h | 5 °C | 431.0 ± 54.9 | 429.5 ± 25.3 |
15 °C | 441.6 ± 22.2 | 442.7 ± 16.5 | ||
25 °C | 510.2 ± 29.1 | 506.8 ± 29.3 | ||
12 h | 5 °C | 447.7 ± 31.3 | 525.5 ± 29.8 | |
15 °C | 417.5 ± 33.4 | 458.9 ± 32.6 | ||
25 °C | 522.1 ± 48.9 | 498.1 ± 33.5 | ||
24 h | 5 °C | 526.3 ± 8.3 | 455.4 ± 38.5 | |
15 °C | 431.2 ± 34.7 | 441.2 ± 18.2 | ||
25 °C | 508.8 ± 6.7 | 440.7 ± 23.1 |
Trial Number | Caffeine Mass (mg) | Chlorogenic Acid Mass (mg) | Final Temperature Roasting (°C) | Caffeine Measured Value (µg/mL) | Caffeine Mass Loss (%) | Mean Caffeine Mass Loss (%) | Chlorogenic Acid Measured Value (µg/mL) | Chlorogenic Acid Mass Loss (%) |
---|---|---|---|---|---|---|---|---|
1 | 11.8 | 22.4 | 210 | 0.88 | 25.4 | 24.9 | 0 | 100 |
2 | 11.5 | 22.0 | 0.87 | 24.3 | 0 | 100 | ||
3 | 11.6 | 24.0 | 220 | 0.86 | 25.9 | 26.4 | 0 | 100 |
4 | 11.9 | 24.1 | 0.87 | 26.9 | 0 | 100 | ||
5 | 12.1 | 20.7 | 230 | 0.68 | 43.8 | 46.3 | 0 | 100 |
6 | 12.3 | 21.6 | 0.63 | 48.8 | 0 | 100 |
VOC Content in Cold Brew Sample | [µg/g] | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | |||||||||||||||||||||||||
Time | 6 h | 12 h | 24 h | 6 h | 12 h | 24 h | 6 h | 12 h | 24 h | ||||||||||||||||||
Temp. [°C] Compound | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 | 5 | 15 | 25 |
Pyrazine | 3.6 | 3.5 | 3.3 | 0.3 | 0.8 | 4.1 | 2.5 | 4.1 | 3.5 | 3.7 | 10.7 | 4.4 | 4.3 | 3.6 | 3.5 | 3.7 | 4.4 | 5.2 | 5.0 | 0.9 | 3.0 | 3.3 | 4.8 | 6.9 | 5.6 | 3.9 | 6.7 |
Pyridine | 29.1 | 14.4 | 18.6 | 8.4 | 9.4 | 9.1 | 5.6 | 14.3 | 15.9 | 24.5 | 30.9 | 11.0 | 24.3 | 24.8 | 15.7 | 16.8 | 21.3 | 13.9 | 10.3 | 16.5 | 6.9 | 17.3 | 20.2 | 39.3 | 23.7 | 15.8 | 50.3 |
3(2H)-Furanone, dihydro-2-methyl- | 4.5 | 4.5 | 5.9 | 3.8 | 4.7 | 2.7 | 0.5 | 4.7 | 5.0 | 4.5 | 14.8 | 5.5 | 4.4 | 5.4 | 5.1 | 6.3 | 6.3 | 4.3 | 7.3 | 5.7 | 2.1 | 6.3 | 6.0 | 10.7 | 8.9 | 6.0 | 10.7 |
4-Methylthiazole | 0.7 | 0.3 | 0.3 | 0.7 | 0.7 | 0.4 | 4.0 | 0.6 | 0.7 | 1.0 | 0.7 | 1.4 | 0.7 | 1.0 | 0.7 | 0.8 | 0.5 | 0.8 | 0.6 | 0.7 | 0.7 | 0.8 | 0.5 | 1.2 | 1.9 | 0.7 | 1.8 |
2-Methylpyrazine | 53.0 | 30.3 | 53.3 | 25.9 | 36.8 | 31.3 | 1.0 | 59.2 | 43.7 | 53.9 | 121.5 | 44.4 | 55.3 | 46.0 | 46.7 | 52.3 | 54.0 | 51.6 | 32.3 | 30.2 | 22.1 | 59.2 | 57.6 | 64.9 | 63.1 | 32.1 | 71.4 |
Furfural | 11.4 | 53.0 | 10.3 | 10.6 | 72.0 | 0.2 | 49.4 | 12tr | 69.7 | 103.0 | 331.4 | 126.2 | 24.9 | 113.3 | 91.8 | 120.2 | 70.6 | 82.8 | 76.1 | 34.9 | 71.4 | 107.5 | 115.1 | 144.6 | 120.4 | 78.4 | 135.8 |
α-Furfurylalcohol | 24.5 | 1.5 | 23.9 | 7.0 | 0.4 | 2.3 | 81.8 | 16.2 | 25.7 | 40.1 | 98.7 | 37.1 | 26.8 | 36.3 | 8.8 | 9.6 | 63.5 | 8.8 | 1.8 | 1.6 | 19.7 | 20.9 | 61.7 | 3.8 | 19.0 | 35.6 | 33.4 |
Pyrazine, 2,6-dimethyl- and Pyrazine, 2,5-dimethyl- | 20.3 | 27.8 | 5.2 | 16.2 | 22.8 | 6.2 | 3.7 | 54.0 | 44.1 | 62.1 | 145.4 | 49.3 | 65.1 | 60.5 | 55.1 | 61.8 | 59.3 | 57.1 | 5.1 | 8.4 | 47.9 | 68.1 | 69.9 | 74.2 | 69.3 | 31.6 | 79.1 |
Pyrazine, ethyl- | 4.9 | 18.5 | 5.6 | 6.0 | 6.4 | 7.9 | 10.8 | 31.9 | 27.0 | 30.9 | 67.3 | 28.9 | 32.5 | 28.3 | 27.3 | 34.0 | 33.3 | 32.1 | 10.3 | 5.9 | 28.6 | 37.0 | 33.8 | 41.9 | 36.8 | 17.2 | 47.1 |
Pyrazine, 2,3-dimethyl- | 1.4 | 5.7 | 0.6 | 1.9 | 0.7 | 1.2 | 9.0 | 11.8 | 9.6 | 11.8 | 8.3 | 7.6 | 12.6 | 5.0 | 10.4 | 10.6 | 10.2 | 6.6 | 0.4 | 1.3 | 7.8 | 11.2 | 11.2 | 12.5 | 12.6 | 2.8 | 14.6 |
α-Pinene | 0.7 | 6.0 | 1.5 | 0.1 | 0.1 | tr 1 | 2.0 | 0.5 | 2.3 | 2.1 | 1.7 | 2.8 | 1.9 | 2.0 | 0.2 | 0.2 | tr | 0.4 | 0.3 | 0.5 | 2.5 | tr 1 | 0.2 | 0.3 | 0.6 | 2.0 | 5.2 |
Benzaldehyde | 1.8 | 2.9 | 0.6 | 1.2 | 2.2 | 0.7 | 0.1 | 2.7 | 3.4 | 2.6 | 6.4 | 2.7 | 1.5 | 2.7 | 2.1 | 2.2 | 1.9 | 3.2 | 1.0 | 0.7 | 0.8 | 0.7 | 3.3 | 5.1 | 2.8 | 4.4 | 3.9 |
2-Furancarboxaldehyde, 5-methyl- | 5.4 | 21.4 | 0.1 | 4.6 | 13.3 | 0.6 | 2.6 | 45.8 | 37.3 | 63.5 | 173.4 | 56.3 | 20.6 | 66.2 | 54.7 | 68.2 | 60.4 | 48.3 | 38.8 | 32.7 | 16.9 | 65.9 | 79.9 | 92.3 | 74.3 | 43.1 | 92.5 |
β-Pinene | 2.2 | 7.1 | 1.2 | 0.1 | tr | 0.1 | 50.1 | 0.2 | 0.8 | 1.9 | 0.5 | 3.7 | 0.6 | 2.0 | 0.3 | 0.3 | 0.1 | 0.2 | tr | 0.1 | 0.9 | 0.3 | 0.6 | 0.6 | tr | 0.6 | 3.8 |
1-Octen-3-ol | 0.1 | 0.4 | 0.1 | 0.1 | 0.1 | tr | 0.1 | 0.3 | 0.5 | 1.0 | 0.1 | tr | 0.7 | 0.3 | 0.1 | 0.1 | tr | 0.1 | tr | tr | tr | 0.1 | tr | tr | 0.2 | 0.1 | 0.9 |
5-Hepten-2-one, 6-methyl- | 2.2 | 0.1 | 0.5 | 1.1 | 0.8 | 0.3 | 0.1 | 0.5 | 0.7 | 3.5 | 0.7 | 0.4 | 2.2 | 0.4 | 0.3 | 0.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 0.2 | 1.3 |
2-Octanone | 1.1 | 1.9 | 1.1 | 0.2 | tr | 0.2 | 0.2 | 1.3 | 1.3 | 2.0 | 1.8 | 0.5 | 0.7 | 1.2 | 0.8 | 0.9 | 1.2 | 0.9 | 0.7 | 0.8 | 0.4 | 0.8 | 0.3 | 1.0 | 0.8 | 0.7 | 1.9 |
2-Furanmethanol, acetate | 16.5 | 17.4 | 6.8 | 2.4 | 7.0 | 8.9 | 1.2 | 3.7 | 2.3 | 15.3 | 38.3 | 19.1 | 3.3 | 11.8 | 6.8 | 56.6 | 21.8 | 16.6 | 28.9 | 11.3 | 23.7 | 35.2 | 2.5 | 23.2 | 27.3 | 0.7 | 3.9 |
Pyrazine, 2-ethyl-6-methyl- | 3.3 | 2.2 | 3.3 | 4.3 | 2.5 | 3.5 | 14.4 | 6.0 | 5.8 | 8.6 | 33.6 | 8.4 | 8.0 | 22.6 | 4.7 | 16.3 | 14.7 | 20.1 | 14.3 | 2.4 | 13.7 | 13.9 | 8.5 | tr | 2.0 | 3.4 | 5.4 |
Pyrazine, 2-ethyl-3-methyl- | 2.5 | 1.0 | 2.5 | 0.5 | 1.6 | 0.4 | 17.2 | 9.2 | 7.1 | 6.4 | 22.8 | 6.4 | 7.2 | 15.3 | 6.9 | 10.5 | 8.9 | 11.6 | 4.1 | 2.8 | 4.7 | 6.4 | 10.3 | 10.1 | 6.4 | 2.8 | 9.9 |
Pyrazine, 2-ethyl-5-methyl- | 2.9 | 0.6 | 1.0 | 0.3 | 0.7 | 0.7 | 5.8 | 14.9 | 15.1 | 1.2 | 14.5 | 1.1 | 2.0 | 5.0 | 6.2 | 17.6 | 7.2 | 11.9 | 0.4 | 1.8 | 0.5 | 0.9 | 15.9 | 19.8 | 13.9 | 1.2 | 5.8 |
p-Cymene | 15.3 | 25.5 | 4.6 | 2.2 | 1.4 | 0.5 | 1.0 | 2.9 | 4.1 | 35.0 | 1.5 | 10.8 | 23.2 | 9.5 | 0.7 | 0.4 | 0.5 | 0.5 | 0.4 | 0.6 | 4.1 | 0.9 | 0.4 | 0.8 | 0.2 | 5.7 | 18.4 |
Eucalyptol | 36.5 | 34.5 | 9.4 | 4.1 | 0.3 | 0.2 | 0.8 | 1.4 | 15.9 | 75.3 | 9.0 | 7.8 | 41.1 | 13.7 | 1.4 | 4.3 | 0.8 | 5.0 | 0.6 | 1.3 | 7.1 | 2.4 | 1.0 | 0.5 | 0.3 | 5.0 | 10.7 |
2-Acetyl-1-methylpyrrole | 0.7 | 1.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.1 | 13.3 | 0.8 | 4.9 | 11.1 | 5.1 | 6.2 | 4.7 | 5.0 | 4.7 | 5.3 | 0.7 | 0.9 | 0.9 | 1.8 | 7.5 | 6.7 | 7.3 | 5.8 | 0.6 | 1.3 |
Pyrazine, 3-ethyl-2,5-dimethyl- | 14.2 | 8.7 | 9.4 | 13.8 | 10.3 | 14.5 | 0.6 | 4.0 | 13.1 | 18.3 | 38.5 | 15.5 | 19.9 | 16.9 | 16.3 | 16.6 | 18.2 | 16.0 | 11.1 | 4.0 | 6.8 | 19.3 | 19.4 | 21.2 | 17.4 | 7.4 | 18.1 |
Pyrazine, 2-ethyl-3,5-dimethyl- | 0.5 | 0.3 | 0.2 | 0.2 | 0.3 | 1.8 | 13.0 | 18.6 | 0.6 | 1.3 | 2.9 | 2.9 | 0.6 | 0.9 | 1tr | 0.9 | 3.3 | 0.1 | 0.3 | 0.2 | 0.7 | 2.1 | 3.9 | 4.0 | 1.0 | 0.4 | 0.5 |
Fenchone | 7.5 | 5.0 | 2.2 | 2.3 | 0.3 | 2.8 | 0.8 | 3.4 | 3.2 | 16.5 | 5.7 | 8.8 | 14.7 | 10.3 | 3.4 | 0.7 | 4.9 | 0.1 | 0.3 | 0.8 | 1.1 | 3.5 | 11.6 | 12.5 | 1.6 | 1.8 | 3.2 |
Linalool | 5.7 | 5.2 | 1.6 | 1.1 | 0.9 | 0.8 | 0.7 | 10.2 | 4.2 | 12.7 | 2.7 | 4.6 | 6.4 | 3.9 | 2.7 | 2.0 | 2.3 | 0.7 | 0.9 | 0.9 | 0.3 | 1.7 | 2.2 | 4.1 | 2.2 | 2.1 | 4.0 |
α-Thujone | 9.4 | 7.7 | 1.9 | 0.2 | 0.2 | 0.1 | 0.3 | 3.1 | 3.0 | 22.9 | 2.5 | 2.8 | 11.2 | 3.4 | 0.4 | 1.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.9 | 0.3 | 2.0 | 1.3 | 0.5 | 1.5 | 5.0 |
β-Thujone | 4.2 | 3.6 | 0.9 | 0.3 | 0.3 | 0.2 | 0.2 | 1.3 | 1.5 | 10.6 | 1.0 | 1.0 | 5.6 | 2.0 | 1.2 | 1.0 | 1.0 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.6 | 0.2 | 0.8 | 2.2 |
2-Methyl-3-trans-propenylpyrazine | 4.5 | 0.8 | tr | 1.7 | 0.3 | 0.4 | 0.5 | 0.8 | 0.7 | 0.6 | 2.4 | 0.7 | 8.8 | 1.1 | 1.0 | 1.2 | 0.4 | 0.4 | 0.4 | 0.2 | 0.2 | 0.7 | 1.5 | 0.7 | 0.1 | 0.2 | 0.8 |
Camphor | 5.7 | 3.8 | 0.8 | 0.3 | 0.2 | 0.1 | 0.2 | 2.4 | 3.0 | 11.2 | 1.9 | 1.1 | 11.4 | 3.2 | 0.8 | 0.6 | 0.1 | 0.1 | 0.1 | 0.4 | 1.1 | 0.1 | tr | tr | 0.7 | 1.2 | 3.1 |
Isomenthone | 0.6 | 0.2 | 1.1 | 4.1 | tr | 4.7 | 1.1 | 0.1 | tr | 5.1 | 3.0 | 1.1 | 2.5 | 1.9 | 0.3 | 1.6 | 0.3 | 0.2 | 0.2 | 0.1 | 0.2 | 1.4 | 0.2 | 1.4 | 1.8 | tr | 0.3 |
2,3,5-Trimethyl-6-ethylpyrazine | 1.2 | 0.5 | 1.3 | 0.8 | 0.9 | 0.2 | 4.5 | 0.9 | 2.7 | 5.9 | 10.6 | 4.5 | 6.0 | 6.9 | 2.6 | 7.9 | 1.8 | 1.6 | 1.4 | 1.1 | 0.6 | 4.8 | 0.5 | 6.6 | 7.3 | 0.3 | 1.7 |
Sabinone | 1.7 | 0.5 | 0.2 | 0.8 | 0.6 | 0.8 | 2.1 | 2.0 | 1.6 | 7.8 | 4.0 | 2.6 | 1.2 | 4.5 | 1.9 | 3.2 | 1.7 | 1.0 | 0.1 | 0.9 | 0.6 | 0.6 | 0.8 | 3.4 | 3.0 | 0.6 | 0.7 |
Terpinen-4-ol | 2.7 | 1.9 | 0.1 | 0.3 | 0.2 | 0.2 | 0.3 | 1.4 | 1.5 | 7.5 | 2.9 | 3.1 | 4.5 | 2.9 | 0.1 | 0.4 | 0.3 | 0.5 | 0.8 | 0.8 | 0.4 | 0.1 | 0.1 | 0.1 | 0.3 | 0.8 | 0.3 |
α-Terpineol | 1.2 | 0.8 | 0.3 | 0.6 | 0.2 | 0.3 | 0.2 | 0.4 | 0.7 | 3.8 | 0.4 | 1.2 | 2.5 | 0.9 | 0.7 | 0.2 | 0.1 | 0.3 | 0.4 | 0.6 | 0.3 | 0.6 | 0.3 | 0.1 | 2.2 | 0.7 | 0.9 |
Carvone | 3.6 | 0.5 | 0.3 | 0.1 | 0.1 | 0.9 | 0.3 | 2.2 | 1.9 | 1.8 | 0.6 | 2.8 | 0.5 | 3.6 | 2.0 | 0.3 | 1.0 | 0.6 | 2.2 | 0.2 | 0.4 | 0.1 | 0.2 | 0.3 | 0.3 | 1.6 | 2.7 |
Indole | tr | 0.1 | 0.3 | 1.1 | 1.2 | 0.9 | 4.7 | 0.8 | 0.9 | 30.9 | 33.5 | 23.9 | 0.6 | 1.7 | 0.9 | 0.4 | 0.8 | 0.7 | 0.2 | 1.7 | 1.2 | 0.9 | 2.0 | 0.2 | 0.4 | tr | tr |
Nr | tR (min) | Compound | RI Exp. 1 | RI Lit. 2 | Identification 3 |
---|---|---|---|---|---|
1 | 4.17 | Pyrazine | 739 | 736 | RI, MS, IS |
2 | 4.42 | Pyridine | 744 | 746 | RI, MS, IS |
3 | 5.97 | 3(2H)-Furanone, dihydro-2-methyl- | 799 | 809 | RI, MS |
4 | 6.24 | 4-Methylthiazole | 817 | 823 | RI, MS |
5 | 6.42 | 2-Methylpyrazine | 835 | 831 | RI, MS |
6 | 6.74 | Furfural | 835 | 833 | RI, MS, IS |
7 | 7.87 | α-Furfurylalcohol | 872 | 860 | RI, MS, IS |
8 | 9.17 | Pyrazine, 2,6-dimethyl- and Pyrazine, 2,5-dimethyl- | 909 | 917 | RI, MS, IS |
9 | 9.27 | Pyrazine, ethyl- | 926 | 921 | RI, MS |
10 | 9.39 | Pyrazine, 2,3-dimethyl- | 926 | 926 | RI, MS |
11 | 9.90 | α-Pinene | 939 | 937 | RI, MS, IS |
12 | 10.77 | Benzaldehyde | 970 | 962 | RI, MS, IS |
13 | 10.87 | 2-Furancarboxaldehyde, 5-methyl- | 970 | 965 | RI, MS |
14 | 11.29 | β-Pinene | 980 | 979 | RI, MS, IS |
15 | 11.43 | 1-Octen-3-ol | 985 | 980 | RI, MS, IS |
16 | 11.66 | 5-Hepten-2-one, 6-methyl- | 991 | 986 | RI, MS, IS |
17 | 11.78 | 2-Octanone | 994 | 990 | RI, MS, IS |
18 | 11.91 | 2-Furanmethanol, acetate | 997 | 995 | RI, MS |
19 | 11.97 | Pyrazine, 2-ethyl-6-methyl- | 1001 | 1003 | RI, MS |
20 | 12.05 | Pyrazine, 2-ethyl-3-methyl- | 1003 | 1004 | RI, MS |
21 | 12.11 | Pyrazine, 2-ethyl-5-methyl- | 1004 | 1005 | RI, MS, IS |
22 | 12.84 | p-Cymene | 1030 | 1025 | RI, MS, IS |
23 | 13.05 | Eucalyptol | 1035 | 1032 | RI, MS, IS |
24 | 14.44 | 2-Acetyl-1-methylpyrrole | 1083 | 1096 | RI, MS |
25 | 14.55 | Pyrazine, 3-ethyl-2,5-dimethyl- | 1083 | 1082 | RI, MS |
26 | 14.74 | Pyrazine, 2-ethyl-3,5-dimethyl- | 1088 | 1084 | RI, MS, IS |
27 | 14.85 | Fenchone | 1091 | 1096 | RI, MS, IS |
28 | 15.22 | Linalool | 1099 | 1099 | RI, MS, IS |
29 | 15.39 | α-Thujone | 1108 | 1103 | RI, MS, IS |
30 | 15.74 | β-Thujone | 1123 | 1119 | RI, MS |
31 | 16.45 | 2-Methyl-3-trans-propenylpyrazine | 1147 | 1146 | RI, MS |
32 | 16.58 | Camphor | 1150 | 1142 | RI, MS, IS |
33 | 16.88 | Isomenthone | 1165 | 1164 | RI, MS, IS |
34 | 16.96 | 2,3,5-Trimethyl-6-ethylpyrazine | 1168 | 1164 | RI, MS |
35 | 17.18 | Sabinone | 1177 | 1163 | RI, MS |
36 | 17.49 | Terpinen-4-ol | 1187 | 1177 | RI, MS, IS |
37 | 17.80 | α-Terpineol | 1196 | 1190 | RI, MS, IS |
38 | 18.75 | Carvone | 1256 | 1242 | RI, MS, IS |
39 | 19.46 | Indole | 1299 | 1295 | RI, MS, IS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimowski, D.; Pachura, N.; Oziembłowski, M.; Nawirska-Olszańska, A.; Szumny, A. Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality. Appl. Sci. 2022, 12, 2582. https://doi.org/10.3390/app12052582
Maksimowski D, Pachura N, Oziembłowski M, Nawirska-Olszańska A, Szumny A. Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality. Applied Sciences. 2022; 12(5):2582. https://doi.org/10.3390/app12052582
Chicago/Turabian StyleMaksimowski, Damian, Natalia Pachura, Maciej Oziembłowski, Agnieszka Nawirska-Olszańska, and Antoni Szumny. 2022. "Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality" Applied Sciences 12, no. 5: 2582. https://doi.org/10.3390/app12052582
APA StyleMaksimowski, D., Pachura, N., Oziembłowski, M., Nawirska-Olszańska, A., & Szumny, A. (2022). Coffee Roasting and Extraction as a Factor in Cold Brew Coffee Quality. Applied Sciences, 12(5), 2582. https://doi.org/10.3390/app12052582